Preparation and characterization of plasma Cu surface modified stainless steel

Xiangyu Zhang , Bin Tang , Ailan Fan , Yong Ma , Linhai Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 260 -264.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 260 -264. DOI: 10.1007/s11595-012-0449-8
Article

Preparation and characterization of plasma Cu surface modified stainless steel

Author information +
History +
PDF

Abstract

Cu modified layer was prepared on the surface of AISI304 stainless steel by plasma surface alloying technique. The effects of processing parameters on the thickness, surface topography, microstructure and chemical composition of Cu modified layer were characterized using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experimental results show that the surface modified layer is a duplex layer (deposited + diffused layer) with thickness of about 26 μm under the optimum process parameters. The modified layer is mainly composed of a mixture of Cu and expanded austenite phase. The ball-on-disk results show that the modified layer possesses low friction coefficients (0.25) and excellent wear resistance (wear volume 0.005×109 μm3). The Cu modified layer is very effective in killing the bacteria S. aureus. Meanwhile, no viable S. aureus is found after 3 h (100% killed) by contact with the Cu alloyed surface.

Keywords

Cu modified layer / stainless steel / wear and friction / antibacterial properties

Cite this article

Download citation ▾
Xiangyu Zhang, Bin Tang, Ailan Fan, Yong Ma, Linhai Tian. Preparation and characterization of plasma Cu surface modified stainless steel. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 260-264 DOI:10.1007/s11595-012-0449-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pardo A., Merino M. C., Coy A. E., . Corrosion Behaviour of AISI 304 Stainless Steel with Cu Coatings in H2SO4[J]. Applied Surface Science, 2007, 253(23): 9 164-9 176.

[2]

Tian X. B., Wang Z. M., Yang S. Q., . Antibacterial Copper-containing Titanium Nitride Films Produced by Dual Magnetron Sputtering[J]. Surface and Coatings Technology, 2007, 201(19–20): 8 606-8 609.

[3]

Wan Y. Z., Raman S., He F., . Surface Modification of Medical Metals by Ion Implantation of Silver and Copper[J]. Vacuum, 2007, 81(9): 1 114-1 118.

[4]

Dan Z. G., Ni H. W., Xu B. F., . Microstructure and Antibacterial Properties of AISI 420 Stainless Steel Implanted by Copper Ions[J]. Thin Solid Films, 2005, 492(1–2): 93-100.

[5]

Tsotsos C., Kanakis K., Davison A., . Mechanical and Tribological Properties of CrTiCu(B,N) Glassy-metal Coatings Deposited by Reactive Magnetron Sputtering[J]. Surface and Coatings Technology, 2006, 200(14–15): 4 601-4 611.

[6]

Wei C. B., Tian X. B., Yang Y., . Microstructure and Tribological Properties of Cu-Zn/TiN Multilayers Fabricated by Dual Magnetron Sputtering[J]. Surface and Coatings Technology, 2007, 202(1): 189-193.

[7]

Ezirmik V., Senel E., Kazmanli K., . Effect of Copper Addition on the Temperature Dependent Reciprocating Wear Behaviour of CrN Coatings[J]. Surface and Coatings Technology, 2007, 202(4–7): 866-870.

[8]

Rotshtein V. P., Ivanov Y. F., Markov A. B., . Surface Alloying of Stainless Steel 316 with Copper Using Pulsed Electron-beam Melting of Film-substrate System[J]. Surface and Coatings Technology, 2006, 200(22–23): 6 378-6 383.

[9]

Xu J., Tao Z., Chen Z. Y., . Preparation of Ni-Cu-Mo-Cr Film Deposited on AZ31 Magnesium Alloy by Double Glow Sputtering with Cu Interlayer[J]. Surface and Coatings Technology, 2007, 202(3): 577-582.

[10]

Xu Z., Liu X., Zhang P., . Double Glow Plasma Surface Alloying and Plasma Nitriding[J]. Surface and Coatings Technology, 2007, 201(9–11): 4 822-4 825.

[11]

Qin L., Fan A. L., Wu P. Q., . Fretting Characters of Molybdenum Nitride Layer on Ti6Al4V Alloy[J]. Rare Metal Materials Engineering, 2006, 35(7): 1 053-1 056.

[12]

Fan A. L., Qin L., Tian L. H., . Corrosion Resistance of Molybdenum Nitride Modified Ti6Al4V Alloy in HCl Solution[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(3): 358-361.

[13]

Xu J., Tao J., Chen Z. Y., . Preparation of Ni-Cu-Mo-Cr Film Deposited on AZ31Magnesium Alloy by Double Glow Sputtering with Cu Interlayer[J]. Surface and Coatings Technology, 2007, 202(3–5): 577-582.

[14]

Yao X. H., Tang B., Fan A. L., . Structure and Corrosion Behaviours of Mo Modified Titanium in Saliva[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(4): 570-573.

[15]

Tang B., Wu P. Q., Li X. Y., . Tribological Behavior of Plasma Mo-N Surface Modified Ti-6Al-4V Alloy[J]. Surface and Coating Technology, 2004, 179(2–3): 333-339.

[16]

Noyce J. O., Michels H., Keevil C. W. Potential Use of Copper Surfaces to Reduce Survival of Meticillin-resistant Staphylococcus Aureus in the Healthcare Environment[J]. Journal of Hospital Infection, 2006, 63(3): 289-297.

[17]

Noyce J. O., Michels H., Keevil C.W. Inactivation of Influenza Avirus on Copper Versus Stainless Steel Surfaces[J]. App. Environ. Microbiol., 2007, 73: 2 748-2 750.

[18]

Chohan Z. H., Pervez H., Rauf A., . Antibacterial cobalt (II), Copper (II), Nickel (II) and Zinc (II) Complexes of Mercaptothiadiazole-Derived Furanyl, Thienly, Pyrrolyl, Salicyloyl and Pyridinyl Schiff Bases[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21(2): 193-201.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/