Pitting corrosion of 316L stainless steel under low stress below yield strength

Shengjie Lü , Xuequn Cheng , Xiaogang Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 238 -241.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (2) : 238 -241. DOI: 10.1007/s11595-012-0444-0
Article

Pitting corrosion of 316L stainless steel under low stress below yield strength

Author information +
History +
PDF

Abstract

Pitting corrosion of 316L stainless steel (316L SS) under various stress was studied by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis in 3.5% NaCl solution. The results of polarization curves show that, with the increase of the stress, the pitting potentials and the passive current density markedly decrease fi rstly (180 MPa), and then increase greatly (200 MPa). The corresponding surface morphologies of the samples after the polarization test well correspond to the results. Mott-Schottky analysis proved the least Cl adsorbed to the surface of passive fi lm with more positive fl at potential, indicating that a moderate stress could increase the pitting corrosion resistance of 316L SS in 3.5% NaCl solution.

Keywords

stress / stainless steel / pitting corrosion

Cite this article

Download citation ▾
Shengjie Lü, Xuequn Cheng, Xiaogang Li. Pitting corrosion of 316L stainless steel under low stress below yield strength. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(2): 238-241 DOI:10.1007/s11595-012-0444-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vinoy T.V., Shaikh H., Khatak H.S., . Metallurgical Analysis of a Failed Containment Building Door Bellows of a Nuclear Reactor[J]. Practical Metallography, 1997, 34(10): 527

[2]

Chen C.L., Yang W. Effect of Ray Irradiation on SCC of Type 316 Stainless Steel in High Temperature Water [J]. Corros. Sci. Prot. Technol., 1997, 9(1): 1

[3]

Nishimura R., Maeda Y. SCC Evaluation of Type 304 and 316 Austenitic Stainless Steels in Acidic Chloride Solutions Using the Slow Strain Rate Technique[J]. Corro. Sci., 2004, 46: 769

[4]

Khatak H.S., Muraleedharan P., Gnanamoorthy J.B., . Evaluation of the Stress Corrosion Resistance of Cold Rolled Aisi Type 316 Stainless Steel Using Constant Load and Slow Strain Rate Tests[J]. Mater., 1989, 168: 157

[5]

Nishimura R. Characterization and Perspective of Stress Corrosion Cracking of Austenitic Stainless Steels (type 304 and type 316) in Acid Solutions Using Constant Load Method[J]. Corro. Sci., 2007, 49: 81

[6]

Anita T., Pujar M.G., Shaikh H., . Assessment of Stress Corrosion Crack Initiation and Propagation in AISI Type 316 Stainless Steel by Electrochemical Noise Technique[J]. Corro. Sci., 2006, 48(9): 2689

[7]

Cheng Y.F., Luo J.L. Electronic Structure and Pitting Susceptibility of Passive Film on Carbon Steel[J]. Electrochim. Acta, 1999, 44: 2947

[8]

Liu Y., Meng G.Z., Cheng Y.F. Electronic Structure and Pitting Behavior of 3003 Aluminum Alloy Passivated under Various Conditions[J]. Electrochim. Acta, 2009, 54: 4155

[9]

Sikoral E., Ikora J., MacDonald D.D. A New Method for Estimating the Diffusivities of Vacancies in Passive Films[J]. Electrochim. Acta., 1996, 41(6): 783

[10]

Hakiki N.E., Da Cunha Belo M., Simoes A.M.P., . Semiconducting Properties of Passive Films on Stainless Steels[J]. J. Electrochem. Soc., 1998, 145(11): 3821

[11]

Stimming U. Electrochim. Photoelectrochemical Studies of Passive Films[J]. Electrochim. Acta., 1986, 31(4): 415

[12]

Schmuki P., Bohni H. Metastable Pitting and Semiconductive Properties of Passive Films[J]. J. Electrochem.Soc., 1992, 139(7): 1908

[13]

Dong C.F., Fu A.Q., Li X.G., . Localized EIS Characterization of Corrosion of Steel at Coating Defect under Cathodic Protection[J]. Electrochim. Acta., 2008, 54: 628

[14]

Cheng X.Q., Li X.G., Yang L.X. Corrosion Resistance of 316L Stainless Steel in Acetic Acid by EIS and Mott-Schottky[J]. J. Wuhan Univ. Technol., 2008, 23(4): 574

[15]

Meng G.Z., Shao Y.W., Zhang T. Synthesis and Corrosion Property of Pure Ni with a High Density of Nanoscale Twins[J]. Electrochim. Acta., 2008, 53(20): 5923

[16]

Vázquez G., Vázquez G., Sikora J., MacDonald D.D., . Diffusivity of Anion Vacancies in WO3 Passive Films[J]. Electrochim. Acta., 2007, 52: 6771

[17]

Dewald J.F. The Charge Distribution at the Zinc Oxide-electrolyte Interface[J]. J. Chem. Solid., 1960, 14(C): 155

[18]

Wilson H.W. A Model for the Current-voltage Curve of Photoexcited Semiconductor Electrodes[J]. J. Appl. Phys., 1977, 48: 4292

[19]

Macdonald D.D. Point Defect Model for the Passive State[J]. J. Electrochem. Soc., 1992, 139(12): 3434

[20]

Macdonald D.D. Passivity-the Key to Our Metals-based Civilization[J]. Pure Appl. Chem., 1999, 71(6): 951

[21]

Bockris J.O.’.M., Khan S.U.M. Surface Electrochemistry: A Molecular Level Approach[M], 1993 New York Plenum Press 170

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/