Cellular automata-based chloride ion diffusion simulation of concrete bridges under multi-factor coupling actions

Jinsong Zhu , Likun He

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 160 -165.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 160 -165. DOI: 10.1007/s11595-012-0428-0
Article

Cellular automata-based chloride ion diffusion simulation of concrete bridges under multi-factor coupling actions

Author information +
History +
PDF

Abstract

In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick’s second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.

Keywords

concrete bridge / chloride ion diffusion / cellular automata / multi-factor coupling actions

Cite this article

Download citation ▾
Jinsong Zhu, Likun He. Cellular automata-based chloride ion diffusion simulation of concrete bridges under multi-factor coupling actions. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(1): 160-165 DOI:10.1007/s11595-012-0428-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo T., Sause R., Frangopol D. M., . Time-Dependent Reliability of PSC Box-Girder Bridge Considering Creep, Shrinkage and Corrosion[J]. Journal of Bridge Engineering, 2011, 16(1): 29-43.

[2]

Collepardi M., Marcialis A., Turrizzani R. The Kinetics of Diffusion of Chloride Ions into the Concrete [J]. Cement, 1970, 67(4): 157-164.

[3]

Funahashi M. Predicting Corrosion Free Service Life of a Structure in a Chloride Environment [J]. ACI Materils Journal, 1990, 87(6): 581-587.

[4]

Maage M., Helland S., Poulsen E., . Service Life Predication of Existing Concrete Structures Exposed to Marine Environment [J]. ACI Materils Journal, 1996, 93(6): 602-608.

[5]

Mangat P. S., Limbachiya M. C. Effect of Initial Curing on Chloride Diffusion in Concrete Repair Materials [J]. Cement and Concrete Research, 1999, 29(9): 1 475-1 485.

[6]

Amey S. L., Johnson D. A., Miltenberger M. A. Prediction the Service Life of Concrete Marine Structures: an Environmental Methodology [J]. ACI Structural Journal, 1998, 95(2): 205-214.

[7]

Dhir R. K., Jones M. R., Ng S. L. Prediction of Total Chloride Content Profile and Concentration/Time-Dependent Diffusion Coefficients for Concrete [J]. Magazine of Concrete Research, 1998, 5(1): 37-48.

[8]

Suryavanshi A. K., Swamy R. N., Cardew G. E. Estimation of Diffusion Coefficient for Chloride Ion Diffusion into Structural Concrete [J]. ACI Materials Journal, 2002, 99(4): 441-449.

[9]

Yu H. F., Sun W. Model Research on Chloride Ion Diffusion in Concretes [J]. Journal of Southeast University (Natural Science Edition), 2006, 36(2): 68-76.

[10]

Von N. J. Theory of Self-Reproducing Automata [M], 1966 Urbana University of Illinois Press

[11]

Margolus N., Toffoli T. Cellular Automata Machines: A New Environment for Modeling [M], 1987 Cambridge MIT Press

[12]

Biondini F., Bontempi F., Frangopol D. M., . Cellular Automata Approach to Durability Analysis of Concrete Structures in Aggressive Environments [J]. Journal of Structural Engineering ASCE, 2004, 130(11): 1 724-1 737.

[13]

Yuan C. B., Zhang D. F. Diffusivity of Chloride in Concrete in Different Stress States [J]. Journal of Hohai University (Natural Science Edition), 2003, 31(1): 50-54.

[14]

Zhu J. S., Gao C. E. Probabilistic Durability Assessment Approach of Deteriorating RC Bridges [J]. Journal of Southeast University (Natural Science Edition), 2011, 27(1): 70-76.

[15]

Thomas M. D. A., Bamforth P. B. Modeling Chloride Diffusion in Concrete Effect of Fly Ash and Slag [J]. Cement and Concrete Research, 1999, 29(4): 487-495.

[16]

Song H. W., Lee C. H., Ann K. Y. Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environments [J]. Cement and Concrete Composites, 2008, 30(2): 113-121.

[17]

Mangat P. S., Molloy B. T. Predicition of Long Term Chloride Concentration in Concrete [J]. Material and Structure, 1994, 27(2): 338-346.

[18]

Diao J. D. Test Study on Mechanical Properties of Corrosion of Prestressed Concrete Structure [D], 2009 Dalian Dalian University of Technology

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/