Properties, phases and microstructure of microwave sintered W-20Cu composites from spray pyrolysiscontinuous reduction processed powders

Jianqing Tao , Xiaoliang Shi

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 38 -44.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 38 -44. DOI: 10.1007/s11595-012-0403-9
Article

Properties, phases and microstructure of microwave sintered W-20Cu composites from spray pyrolysiscontinuous reduction processed powders

Author information +
History +
PDF

Abstract

The effects of microwave sintering on the properties, phases and microstructure of W-20Cu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-20Cu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures.

Keywords

W-20Cu composite powder / spray pyrolysis-continuous reduction / microwave sintering

Cite this article

Download citation ▾
Jianqing Tao, Xiaoliang Shi. Properties, phases and microstructure of microwave sintered W-20Cu composites from spray pyrolysiscontinuous reduction processed powders. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(1): 38-44 DOI:10.1007/s11595-012-0403-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y. P., Yu S. Thermal-mechanical Process in Producing High Dispersed Tungsten-copper Composite Powder [J]. Int. J. Refract. Met. Hard Mater., 2008, 26(6): 540-548.

[2]

Liu B. B., Xie J. X., Qu X. H. Fabrication of W-Cu Functionally Graded Materials with High Density by Particle Size Adjustment and Solid State Hot Press [J]. Compos. Sci. Technol., 2008, 68(6): 1 539-1 547.

[3]

Hashempour M., Razavizadeh H., Rezaie H. R., . Thermochemical Preparation of W-25%Cu Nanocomposite Powder Through a CVT Mechanism [J]. Mater. Charact., 2009, 60(11): 1 232-1 240.

[4]

Shi X. L., Yang H., Shao G. Q., . Fabrication and Properties of W-Cu Alloy Reinforced by Multi-walled Carbon Nanotubes [J]. Mater. Sci. Eng. A, 2007, 457(1–2): 18-23.

[5]

Oghbaei M., Mirzaee O. Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications [J]. J. Alloys Compd., 2010, 494(1–2): 175-189.

[6]

Guo Y. L., Yi J. H., Luo S. D., . Fabrication of W-Cu Composites by Microwave Infiltration [J]. J. Alloys Compd., 2010, 492(1–2): L75-L78.

[7]

Luo S. D., Yi J. H., Guo Y. L., . Microwave Sintering W-Cu Composites: Analyses of Densification and Microstructural Homogenization [J]. J. Alloys Compd., 2009, 473(1–2): L5-L9.

[8]

Kim D. G., Lee K. W., Oh S. T., . Preparation of W-Cu Nanocomposite Powder by Hydrogen-reduction of Ball-milled W and CuO Powder Mixture [J]. Mater. Lett., 2004, 58(7–8): 1 199-1 203.

[9]

Cheng J. G., Lei C. P., Xiong E. T., . Preparation and Characterization of W-Cu Nanopowders by A Homogeneous Precipitation Process [J]. J. Alloys Compd., 2006, 421(1–2): 146-150.

[10]

Yang X. H., Liang S. H., Wang X. H., . Effect of WC and CeO2 on Microstructure and Properties of W-Cu Electrical Contact Material [J]. Int. J. Refract. Met. Hard Mater., 2010, 28(2): 305-311.

[11]

Li S. B., Xie J. X. Processing and Microstructure of Functionally Graded W/Cu Composites Fabricated by Multi-billet Extrusion Using Mechanically Alloyed Powders [J]. Compos. Sci. Technol., 2006, 66(13): 2 329-2 336.

[12]

Alam S. N. Synthesis and Characterization of W-Cu Nanocomposites Developed by Mechanical Alloying [J]. Mater. Sci. Eng., A, 2006, 433(1–2): 161-168.

[13]

Xi X. L., Xu X. Y., Nie Z. R., . Preparation of W-Cu Nano-composite Powder Using A Freeze-Drying Technique [J]. Int. J. Refract. Met. Hard Mater., 2010, 28(2): 301-304.

[14]

Shi X. L., Yang H., Wang S., . Characterization of W-20Cu Ultrafine Composite Powder Prepared by Spray Drying and Calcining-continuous Reduction Technology [J]. Mater. Chem. Phys., 2007, 104(2–3): 235-239.

[15]

Hashempour M., Razavizadeh H., Rezaie H. R., . Chemical Mechanism of Precipitate for Formation and pH Effect on the Morphology and Thermochemical Co-precipitation of W-Cu Nanocomposite Powders [J]. Mater. Chem. Phys., 2010, 123(1): 83-90.

[16]

Doré F., Lay S., Eustathopoulos N., . Segregation of Fe During the Sintering of Doped W-Cu Alloys [J]. Scripta Mater., 2003, 49(3): 237-242.

[17]

Zhou Z. J., Du J., Song S. X., . Microstructural Characterization of W/Cu Functionally Graded Materials Produced by a One-Step Resistance Sintering Method [J]. J. Alloys Compd., 2007, 428(1–2): 146-150.

[18]

Shi X. L., Yang H., Wang S. Spark Plasma Sintering of W-15Cu Alloy from Ultrafine Composite Powder Prepared by Spray Drying and Calcining-continuous Reduction Technology [J]. Mater. Charact., 2009, 60(2): 133-137.

[19]

Rosinski M., Fortuna E., Michalski A., . W/Cu Composites Produced by Pulse Plasma Sintering Technique (PPS) [J]. Fusion Eng. Des., 2007, 82(15–24): 2 621-2 626.

[20]

Ardestani M., Rezaie H. R., Arabi H., . The Effect of Sintering Temperature on Densification of Nanoscale Dispersed W-20–40%wt Cu Composite Powders [J]. Int. J. Refract. Met. Hard Mater., 2009, 27(5): 862-867.

[21]

Pintsuk G., Brünings S. E., Döring J. E., . Development of W/Cu-functionally Graded Materials [J]. Fusion Eng. Des., 2003, 66–68: 237-240.

[22]

Rödiger K., Dreyer K., Gerdes T., . Microwave Sintering of Hardmetals [J]. Int. J. Refract. Met. Hard Mater., 1998, 16(4–6): 409-416.

[23]

Agrawal D. K. Microwave Processing of Ceramics [J]. Curr. Opin. Solid State Mater. Sci., 1998, 3(5): 480-485.

[24]

Upadhyaya A., Tiwari S. K., Mishra P. Microwave Sintering of W-Ni-Fe Alloy [J]. Scripta Mater., 2007, 56(1): 5-8.

[25]

Leonelli C., Veronesi P., Denti L., . Microwave Assisted Sintering of Green Metal Parts [J]. J. Mater. Process. Technol., 2008, 205(1–3): 489-496.

[26]

Prabhu G., Chakraborty A., Sarma B. Microwave Sintering of Tungsten [J]. Int. J. Refract. Met. Hard Mater., 2009, 27(3): 545-548.

[27]

German R. M., Suri P., Park S. J. Review: Liquid Phase Sintering [J]. J. Mater. Sci., 2009, 44(1): 1-39.

[28]

German R. M. Enhanced Sintering Through Second Phase Additions [J]. Powder Metall., 1985, 28(1): 7-11.

[29]

Sunil B. R., Sivaprahasam D., Subasri R. Microwave Sintering of Nanocrystalline WC-12Co: Challenges and Perspectives [J]. Int. J. Refract. Met. Hard Mater., 2010, 28(2): 180-186.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/