Application of empirical electron theory of solids and molecules to composition design of multi-component medium-low-alloy steels

Juyan Shi , Guisheng Xie

Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 9 -17.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2012, Vol. 27 ›› Issue (1) : 9 -17. DOI: 10.1007/s11595-012-0398-2
Article

Application of empirical electron theory of solids and molecules to composition design of multi-component medium-low-alloy steels

Author information +
History +
PDF

Abstract

For austenitic octahedral segregation structure units, their pure mathematics statistic distributive probability is calculated by the empirical electron theory (EET) of solids and molecules and K-B formula. The practical distributive probability can be obtained only if the statistic distribution of austenitic octahedral segregation structure units and the interaction of the alloying elements in steel are considered. Based on 8 groups of experimental data of original steels, three empirical formulas revealing relationships between material macromechanics factor (S m) and tensile strength (σ b), or impact energy (A K), or hardness (HRC) of multi-component medium-low-alloy steels were established, respectively. Through the three empirical formulas, new supersaturated carburizing steel has been successfully designed and developed. The other 2 groups of the original experimental steels are used as the standard steel for testing the percentage error of the new steel. The results show that the calculated values are well consistent with those of measured ones and the new supersaturated carburized steel can meet the requirements of the die assembly of cold-drawn seamless stainless steel tube of Taiyuan Iron & Steel (Group) Company LTD.

Keywords

supersaturated carburizing steel / composition design / microstructure / empirical electron theory / mechanical property

Cite this article

Download citation ▾
Juyan Shi, Guisheng Xie. Application of empirical electron theory of solids and molecules to composition design of multi-component medium-low-alloy steels. Journal of Wuhan University of Technology Materials Science Edition, 2012, 27(1): 9-17 DOI:10.1007/s11595-012-0398-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu R. H. The Empirical Electron Theory in Solids and Molecules (EET)[J]. Chin. Sci. Bull., 1978, 23: 217-234.

[2]

Z L Liu, Z G Sun, Z L Li. Application of Yu’s Theory and Cheng’s Theory in Alloy Research [J]. Prog. Nat. Sci., 1998:134–146

[3]

Liu Z. L., Dai T. S., Yang S. L., . The Application of Yu’s Theory in the Study of Phase Transformation of Industrial Materials [J]. Sci. China Ser. A, 1998, 8: 880-886.

[4]

Zhu R. F., Lu Y. P., Wei T. C-Mn Segregation and Its Effect on Phase Transformation and Deformation in Fe-Mn-C Alloys[J]. Sci. China Ser. E, 1997, 40: 567-573.

[5]

Qian C. F., Zhang G. Y., Chen F. F., . Empirical Equation on Alloy Design of a High Strength-Toughness Steel[J]. Journal of Northeastern University (Natural Science), 2001, 22: 351-353.

[6]

Zhang J. M. Valence Electron Structure Analysis of Hardness of Fe-C Martensite[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2001, 29: 31-37.

[7]

Pichering F. B. Physical Metallurgy and Design of Steel[M], 1975 London Applied Science Publishers Ltd.

[8]

Wang X. T. Design and Development of Engineering Materials[J]. Ordnance Material Science and Engineering, 1990, 11: 11-12.

[9]

Cheng J. K., Vandermeer R. A., Reynolds W. T. Effects of Alloying Elements upon Austenite Decomposition in Low-C Steels [J]. Metall. Mat. Trans. A Phys. Metall. Mat. Sci., 1994, 25A: 1 367-1 379.

[10]

Fang H. S., Zhang Y. K., Huang J. F. Recent Development of Mn B System Air Cooled Bainitic Steels[J]. Heat Treatment of Metal, 1997, 4: 9-11.

[11]

Pham T. T., Brimkacombe E. B. Hawbolt. J. K. Predicting the Onset of Transformation under Noncontiguous Cooling Conditions: Part I[J]. Metall. Mat. Trans. A Phys. Metall. Mat. Sci., 1995, 26A: 1 978-1 992.

[12]

Cook D. C. Stain Induced Martensite Formation in Stainless Steel [J]. Metall. Trans., 1987, 18A: 201-210.

[13]

Zheng L. P., Yang R. C., Yang H. T., . Distributional Probability of Structural Units in Austenite and Its Application[J]. Journal of Gansu University of Technology, 2003, 29: 29-31.

[14]

Zhang S. G. Calculation of Martensite Start Temperature Ms by Yu’s Empirical Electron Theory of Solids and Molecules[J]. Transactions of Materials and Heat Treatment, 2004, 25: 53-56.

[15]

Liu Z. L. Alloy VES and Composition Design[M], 1990 Changchun Jilin Science and Technology Publishing House

[16]

Liu Z. L., Li Z. L., Liu W. D. Interface Electron Structure and Interface Properties[M], 2002 Beijing Science Publishing House

[17]

Shi J. Y., Xie G. S., Chang J. Y., . Effect of Valence Electron Structure on Temper Process and Hardness of the Supersaturated Carburized Layer[J]. Journal of Wuhan University of Technology-Materials Science Ed., 2010, 25(1): 127-134.

[18]

Zheng Y., You M., Xiong W. H., . Valence-Electron Structure and Properties of Main Phases in Ti(C, N)-Based Cermets[J]. Materials Chemistry and Physics, 2003, 82: 877-881.

[19]

Hu S. T. Application Study of Value Electron Theory on Low Multi-alloy Steel[D], 2006 Jinan Jinan University

[20]

Lu Y. P., Zhu R. F., Lei T. Q., . Effect of Me on Valence Electron Structure of Fe-Me-C Alloyed Austenite[J]. Journal of Applied Sciences, 1999, 17: 485-488.

[21]

Xu H. J., Shi J. Y., Ruan Y. Z. Foundation of Materials Science[M], 2001 Beijing Beijing University of Technology Publishing House

[22]

Krauss G. Microstructure and Performance of Carburized Steel. Part I: Martensite A[J]. Adv. Mater. Processes, 1995, 147: 40Y-40BB.

[23]

Zhang R. L. Empirical Electron Theory in Solids and Molecules[M], 1993 Changchun Jilin Science and Technology Publishing House

[24]

Sun Z. B., Zhu P. F., Lin H. G. Alloy-Steel Hand Book (Part, Fascicule I)[M], 1982 Beijing Metallurgy Industry Publishing House

[25]

Hu Z. Z. Steel and Heat Treating Curve Hand Book[M], 1986 Beijing Defense Industry Publishing House

[26]

Song Y. P., Liu G. Q., Li Z. L., . Valence Electron Structure of Γ-Fe Unit-Cell Bearing Alloy Atoms and Its Influence on Phase Transformation of the Alloy Structural Steel[J]. Journal of University of Science and Technology Beijing, 2007, 27: 675-678.

[27]

Liu Z. L., Li Z. L., Sun Z. G., . Valence Electron Structure of Cast Iron and The Criterion of Element Graphitic Behavior[J]. Sci. China Ser. A, 1995, 25: 989-994.

[28]

Han Z. C., Li L. S. Miniature Seamless Steel Tube Manufacture[M], 1995 Beijing Metallurgy Industry Publishing House

[29]

Wu G. L. Experiments Concerning and Application of Russian Type Dies for Steel Tube Cold-Drawing[J]. Steel Pipe, 1997, 26: 13-16.

[30]

Liu Y., Liu Z. L., Liu W. D., . Research of Alloying Agent Solid-Solution Strengthening by Phase Structure Factor[J]. Prog. Nat. Sci., 2002, 12: 1 172-1 176.

[31]

Zahurnensky P., Janovec J., Blach J. Some Aspects of Tempered Martensite Embrittlement in 3Cr-Mo-V Steel [J]. ISIJ Int., 1994, 34: 536-540.

[32]

Nussbaum G., Richter J., Gueth A., . Microalloying and a New Post Forging Treatment of Mmedium Carbon Steels[J]. Mater. Sci. Forum, 1998, 284–286: 443-450.

[33]

Qi B. S., Sun X. T., Xu Y., . Microstructure and Properties of Low Alloy Steel with High Carbon Concentration Carburizing[J]. Heat Treatment of Metals, 1999, 9: 12-13.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/