Utilization of coal gangue and copper tailings as clay for cement clinker calcinations

Guohua Qiu , Zhongyang Luo , Zhenglun Shi , Mingjiang Ni

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1205 -1210.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1205 -1210. DOI: 10.1007/s11595-011-0391-1
Article

Utilization of coal gangue and copper tailings as clay for cement clinker calcinations

Author information +
History +
PDF

Abstract

In order to avoid environmental pollution from Coal gangue (CG) and copper tailings (CT), the utilization as cement clinker calcinations was experimentally investigated. Low-calcium limestone was also selected as another raw material. The clinker component and microstructure were analyzed by XRD and SEM. The experimental results showed that qualified cement clinker could be generated by substituting CG and CT compound for clay. While mixed with high-calcium limestone and low-calcium limestone, the calcinations temperature were 50 °C or 100 °C lower than that of clay. CT and CG contain oxygen-rich minerals and potential of geological rock energy. The energy of CG performs functions and drops down sintering temperature. The calcination time was shortened and the clinker sintering coal consumption reduced while substituting CG and CT for clay, and also served the reutilization of low-calcium limestone, CG and CT.

Keywords

coal gangue / copper tailings / XRD / oxygen-rich minerals

Cite this article

Download citation ▾
Guohua Qiu, Zhongyang Luo, Zhenglun Shi, Mingjiang Ni. Utilization of coal gangue and copper tailings as clay for cement clinker calcinations. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1205-1210 DOI:10.1007/s11595-011-0391-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo W., Zhu J.P., Li D.X., . Early Hydration of Composite Cement with Thermal Activated Coal Gangue[J]. J. of Wuhan Univ. of Techn.-Mater. Sci. Ed., 2010, 25(1): 162-166.

[2]

Wang X.M., Zhao B., Zhang C.S., Zhang Q. L. Paste-like Self-Flowing Transportation Backfilling Technology based on Coal Gangue[J]. Min. Sci. & Tech.., 2009, 19(2): 0 137-0 143.

[3]

Li D.X., Li X.S., Gong C.C., Pan Z.H. Research on Cementitious Behavior and Mechanism of Pozzolanic Cement with Coal Gangue[J]. Cem. Concr. Res., 2006, 36: 1 752-1 759.

[4]

Li C., Wan J.H., Sun H.H., Li L.T. Investigation on the Activation of Coal Gangue by a New Compound Method[J]. J. of Haza. Mater., 2010, 179: 515-520.

[5]

Chana B.K.C., Bouzalakosb S., Dudeney A.W.L. Cement -ed Products Containing Waste from Mineral Processing and Bioleaching[J]. Min. Eng., 2009, 22(15): 1 326-1 333.

[6]

National Bureau of Statistics of China. Various Sectors of Industrial Solid Waste Generation and Emissions[EB/OL]. http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm

[7]

Mostafa B., Tikou B., Bruno Bussie’re. Chemical Factors that Influence the Performance of Mine Sulphidic Paste Backfill[J]. Cem. Concr. Res., 2003, 32: 1 133-1 144.

[8]

Weaver W. S., Luka R. Laboratory Studies of Cement-stabilized Mine Tailings[J]. Can. Min. Metall. Bull., 1970, 64(701): 988-1 001.

[9]

Choi Y. W., Kim Y. J., Choi O., Lee K. M. Mohamed Lachemi, Utilization of Tailings from Tungsten Mine Waste as a Substitution Material for Cement[J]. Constr. & Build. Mat., 2009, 23(2): 2 481-2 486.

[10]

Carlson L., Bigham J. M., Schwertmann U., Kyek A., Wagner F. Scavenging of as from Acid Mine Drainage by Schwertmannite and Ferrihydrite: A Comparison with Synthetic Analogues[J]. Env. Sci. Tech., 2002, 36(8): 1712-1719.

[11]

Huang S. W., Yu P. S. Burnability of Raw Materials and Mineral Characteristics of Clinker for Copper Slag Ingredients[J]. Cem. Eng., 2002, 6(3): 18-20.

[12]

Lim M.H., Han G.C., Ahn J.W., You K.S., Kim H.S. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines[J]. Int. J. Env. Res. Pub. Healt., 2009, 6: 2 865-2 879.

[13]

Wang Z.S., Fu S.Y. New Technologies and Theory of New Cement Raw Material for Clinker[M], 1999 Beijing China Science Tech Press 16-20.

[14]

Shvarzman A., Kovler K., Grader G. S., Shter G. E. The Effect of Dehydroxylation/Amorphization Degree on Pozzolanic Activity of Kaolinite[J]. Cem. Concr. Res., 2003, 33(3): 405-416.

[15]

Papadakis V. G. Experimental Investigation and Theoretical Modeling of Silica Fume Activity Concrete[J]. Cem. Concr. Res., 1999, 29(1): 79-86.

[16]

Horváth E., Frost R.L., Makó Kristóf J., Cseh T. Thermal Treatment of Mechanochemically Activated Kaolinite[J]. Therm. Act., 2003, 404(1): 227-234.

[17]

Ma X.W., Niu J.S. Discussion on Stimulates Method of Active Coal Gangue[J]. Mult. Util. of Min. Res., 2008, 4(2): 41-49.

[18]

Guo W., Li D.X., Chen J.H., . Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation[J]. J. of Wuhan Univ. of Techn.-Mater. Sci. Ed., 2009, 24(2): 326-328.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/