First-principles study on adsorption of Au atom on hydroxylated SiO2 surface

Miao Wan , Kaihua He , Qili Chen , Hanlie Hong

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1184 -1188.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1184 -1188. DOI: 10.1007/s11595-011-0387-x
Article

First-principles study on adsorption of Au atom on hydroxylated SiO2 surface

Author information +
History +
PDF

Abstract

Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general gradient approximation (GGA). The results of adsorption energies and density of electronic states (DOS) suggest that the hollow and bridge sites have the basically equal capability of binding Au, while the ability of the Top site is weaker. Two new energy levels emerge after the adsorption at all sites; in DOS of the Hollow configuration, one locates at −0.15 eV, composed of Au 5d and O 2p electronic states, another just crosses through the Fermi level, consisting of Au 6s, H 1s and O 2p. In addition, Mulliken population analyses indicate that electron transfer takes place between the Au atom and the surface H and O atoms in the Hollow and Bridge configurations, which can be used to interpret the adsorption of Au onto the positions. However, neither H nor O chemically bonds with Au atom.

Keywords

Au / adsorption / hydroxylated SiO2 / first-principles / general gradient approximation

Cite this article

Download citation ▾
Miao Wan, Kaihua He, Qili Chen, Hanlie Hong. First-principles study on adsorption of Au atom on hydroxylated SiO2 surface. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1184-1188 DOI:10.1007/s11595-011-0387-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schalow T., Laurin M., Brandt B., . Oxygen Storage at the Metal/Oxide Interface of Catalyst Nanoparticles [J]. Angewandte Chemie-International Edition, 2005, 44: 7 601-7 605.

[2]

Berggren L., Niklasson G. A. Optical Charge Transfer Absorption in Lithium-intercalated Tungsten Oxide Thin Films [J]. Applied Physics Letter, 2006, 88: 081 906-081 909.

[3]

Haake U., Lutzenkirchen-Hecht D., Frahm R. In situ Electrochemical Lithium Intercalation into Amorphous Oxide Thin Films [J]. Surf. Interface Anal., 2006, 38: 330-334.

[4]

Ung T., Liz-Marzan L. M., Mulvaney P. Optical Properties of Thin Films of Au@SiO2 Particles [J]. J. Phys. Chem. B., 2001, 105: 3 441-3 452.

[5]

Ung T., Liz-Marzan L. M., Mulvaney P. Gold Nanoparticle Thin Films [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202: 119-126.

[6]

Endo T., Yamamura S., Nagatani N., . Localized Surface Plasmon Resonance Based Optical Biosensor Using Surface Modified Nanoparticle Layer for Label-free Monitoring of Antigen-antibody Reaction [J]. Science and Technology of Advanced Materials, 2005, 6: 491-500.

[7]

Abrahamyan T., Nerkararyan K. Surface Plasmon Resonance on Vicinity of Gold-coated Fiber Tip [J]. Physics Letters A, 2007, 364: 494-496.

[8]

Tian B., Liu X., Yang H., . General Synthesis of Ordered Crystallized Metal Oxide Nanoarrays Replicated by Micerowave-Digested Mesoporous Silica [J]. Advanced Materials, 2003, 15: 1 370-1 374.

[9]

Kleitz F., Kim T., Ryoo R. Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems [J]. Bull. Korean Chem. Soc., 2005, 26: 1 653-1 668.

[10]

Smatt J., Weidenthaler C., Rosenholm J., . Hierarchically Porous Metal Oxide Monoliths Prepared by the Nanocasting Route [J]. Chem. Mater, 2006, 18: 1 443-1 450.

[11]

Lepoutre S., Sm Tt J., Laberty C., . Detailed Study of the Pore-filling Processes During Nanocasting of Mesoporous Films Using SnO2/SiO2 as a Model System [J]. Microporous and Mesoporous Materials, 2009, 123: 185-192.

[12]

Inntam C., Moskaleva L. V., Neyman K. M., . Adsorption of Dimmers and Trimers of Cu, Ag, and Au on Regular Sites and Oxygen Vacancies of the MgO(001) Surface: a Density Functional Study Using Embedded Cluster Models [J]. Appl. Phys. A, 2006, 82: 181-189.

[13]

Sicolo S., Valentin C. D., Pacchioni G. Formation of Cationic Gold Clusters on the MgO Surface From Au(CH3) (acac) Organometallic Precursors: A Theoretical Analysis [J]. J. Phys. Chem. C, 2007, 111: 5 154-5 161.

[14]

Pillay D., Wang Y., Hwang G. S. A Comparative Theoretical Study of Au, Ag and Cu Adsorption on TiO2 (110) Rutile Surfaces [J]. Korean J. Chem. Eng., 2004, 21: 537-547.

[15]

Hernandez N. C., Graciani J., Marquez A., . Cu, Ag and Au Atoms Deposited on the α-Al2O3(0 0 0 1) Surface: a Comparative Density Functional Study [J]. Surface Science, 2005, 575: 189-196.

[16]

Briquet L. G. V., Catlow C. R. A., French S. A. Comparison of the Adsorption of Ni, Pd, and Pt on the (0001) Surface of α-Alumina [J]. J. Phys. Chem. C, 2008, 112: 18 948-18 954.

[17]

Perevalov T. V., Shaposhnikov A. V., Gritsenko V. A. Electronic Structure of Bulk and Defect α- and γ-Al2O3 [J]. Microelectronic Engineering, 2009, 86: 1 915-1 917.

[18]

Lopez N., Illas F., Pacchioni G. Adsorption of Cu, Pd, and Cs Atoms on Regular and Defect Sites of the SiO2 Surface [J]. J. Am. Chem. Soc., 1999, 121: 813-821.

[19]

Ferullo R., Castellani N. NCO Adsorption over SiO2 and Cu/ SiO2 Cluster Models from Density Functional Theory [J]. Journal of Molecular Catalysis. A, Chemical., 2004, 221: 155-162.

[20]

Vitto A. D., Pacchioni G., Lim K. H., . Gold Atoms and Dimers on Amorphous SiO2: Calculation of Optical Properties and Cavity Ringdown Spectroscopy Measurements [J]. J. Phys. Chem. B, 2005, 109: 19 876-19 884.

[21]

Ferullo R. M., Garda G. R., Belelli P. G., . Deposition of Small Cu, Ag and Au Particles on Reduced SiO2 [J]. Journal of Molecular Structure: Theochem, 2006, 769: 217-223.

[22]

Lim K. H., Zakharieva O., Shor A. M., . Modeling Metal Adsorption at Amorphous Silica: Gold Atoms and Dimers as Example [J]. Chemical Physics Letters, 2007, 444: 280-286.

[23]

Perdew J. P., Chevary J. A., Vosko S. H., . Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation [J]. Physical Review B, 1992, 46: 6 671-6 687.

[24]

Verdozzi C., Jennison D. R., Schultz P. A., . Sapphire (0001) Surface, Clean and With d-metal Overlayers [J]. Physical Review Letters, 1999, 82: 799-802.

[25]

Jennison D. R., Mattsson T. R. Atomic Understanding of Strong Nanometer-thin Metal/alumina Interfaces [J]. Surface Science, 2003, 544: L689-L696.

[26]

Segall M. D., Lindan P. J. D., Probert M. J., . First-principles Simulation: Ideas, Illustrations and the CASTEP Code [J]. J. Phys.: Condens. Matter., 2002, 14: 2 717-2 744.

[27]

Del Vitto A., Pacchioni G., Lim K., . Gold Atoms and Dimers on Amorphous SiO2: Calculation of Optical Properties and Cavity Ringdown Spectroscopy Measurements [J]. J. Phys. Chem. B., 2005, 109: 19 876-19 884.

[28]

Yao H. Y., Gu X., Ji M., . First-principles Study of Metal Atoms Adsorbed on SiO2 Surface [J]. Acta Physica Sinica, 2006, 55: 6 042-6 046.

[29]

Segall M. D., Shah R., Pickard C. J. Population Analysis of Plane-wave Electronic Structure Calculations of Bulk Materials [J]. Phys. Rev. B, 1996, 54: 16 317-16 320.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/