Multiwalled carbon nanotubes reinforced alumina composites

Jinyong Zhang , Jianghao Liu , Liwei Huang , Zhengyi Fu

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1171 -1173.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1171 -1173. DOI: 10.1007/s11595-011-0384-0
Article

Multiwalled carbon nanotubes reinforced alumina composites

Author information +
History +
PDF

Abstract

1wt% multiwalled carbon nanotube (MWNTs) reinforced alumina composites was sintered to full density by spark plasma sintering. And pure alumina and graphite/alumina composites were also prepared by the same way for comparison. Indentation and single edge V-notched beam (SEVNB) toughness were measured respectively. The experimental results show that MWNTs could not improve toughness of alumina too much as that once expected. And SEVNB toughness was more valid than indentation toughness.

Keywords

MWNT / alumina / toughness

Cite this article

Download citation ▾
Jinyong Zhang, Jianghao Liu, Liwei Huang, Zhengyi Fu. Multiwalled carbon nanotubes reinforced alumina composites. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1171-1173 DOI:10.1007/s11595-011-0384-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhan G.-D., Kuntz J. D., Wan J., Mukherjee A. K. Singlewall Carbon Nanotubes as Attractive Toughening Agents in Alumina-based Nanocomposites[J]. Nature Mater., 2003, 2: 38-42.

[2]

Wang X., Padture N. P., Tanaka H. Contact-damage-resistant Ceramic/Singlewall Carbon Nanotubes and Ceramic/Graphite Composites[J]. Nature Mater., 2004, 3: 539-544.

[3]

Tanaka K. Elastic/Plastic Indentation Hardness and Indentation Fracture Toughness: The Inclusion Core Model[J]. Journal of Materials Science, 1987, 22: 1 501-1 508.

[4]

Hill R. The Mathematical Theory of Plasticity[M], 1950 London Oxford University Press 64

[5]

Anstis Evans A. G. Perspective on the Development of High-toughness Ceramics[J]. J.Am. Ceram. Soc., 1990, 73: 187-206.

[6]

Kübler J. Salem J. A., Quinn G. D., Jenkins M. G. In Fracture Resistance Testing of Monolithic and Composite Brittle Materials[M]. ASTM STP 1409, 2002 West Conshohocken, Pennsylvania American Society for Testing and Materials

[7]

Bernholc J., Brenner D., Buongiorno Nardelli M., . Mechanical and Electrical Properties of Nanotubes[J]. Annu. Rev. Mater. Res., 2002, 32: 347-375.

[8]

Siegel R. W., Chang S. K., Ash B. J., . Mechanical Behavior of Polymer and Ceramic Matrix Nanocomposites[J]. Scripta Mater., 2001, 44: 2 061-2 064.

[9]

Xia Z., Riester L., Curtin W. A., . Direct Observation of Toughening Mechanisms in Carbon Nanotube Ceramic Matrix Composites[J]. Acta Mater., 2004, 52: 931-944.

[10]

Peigney A., Laurent C., Flahaut E., Rousset A. Carbon Nanotubes in Novel Ceramic Matrix Nanocomposites[J]. Ceramics International, 2000, 26: 677-683.

[11]

Han Gi Chae, Sreekumar1 T V, et al. A Comparison of Reinforcement Efficiency of Various Types of Carbon Nanotubes in Polyacrylonitrile Fiber[J]. Polymer, 2005:10 925–10 935

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/