As-extruded AZ31B magnesium alloy fatigue crack propagation behavior

Hongxia Zhang , Zhifeng Yan , Wenxian Wang , Peiyang Liang , Hongzhi Li , Yinghui Wei

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1114 -1120.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1114 -1120. DOI: 10.1007/s11595-011-0373-3
Article

As-extruded AZ31B magnesium alloy fatigue crack propagation behavior

Author information +
History +
PDF

Abstract

The fatigue crack propagation rate of as-extruded AZ31B magnesium alloy was studied. Compact tension [C(T)] of the notch direction parallel (T-L), vertical (L-T), and inclined at 45° to the extrusion direction was investigated. The experimental results indicate that the crack propagation direction is parallel to the extrusion direction for T-L and L-T specimens, whereas the specimen inclined at 45° has an angular deflection of 9° to 11° toward the extrusion direction. The T-L specimen has the fastest fatigue crack propagation rate, and the L-T specimen has the slowest rate, the fatigue crack propagation rate of the specimen inclined at 45° is between the two directions. The crack tip propagates by both transgranular and intergranular fractures. Fatigue fractures consist of cleavage plane or quasi-cleavage and are brittle fractures. The fatigue striation occurs for specimens inclined at 45° and its size is 3–15 μm.

Keywords

AZ31B magnesium alloy / fatigue crack propagation rate / brittle fracture

Cite this article

Download citation ▾
Hongxia Zhang, Zhifeng Yan, Wenxian Wang, Peiyang Liang, Hongzhi Li, Yinghui Wei. As-extruded AZ31B magnesium alloy fatigue crack propagation behavior. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1114-1120 DOI:10.1007/s11595-011-0373-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Keiro T., Masaki N., Yoshihiko Uematsu. Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments[J]. Int. J. Fatigue, 2009, 31: 1 137-1 143.

[2]

Luo T. J., Yang Y. S., Tong W. H., . Fatigue Deformation Characteristic of As-extruded AM30 Magnesium Alloy[J]. Mater. Des., 2010, 31: 1617-1621.

[3]

Chen Z., Yan H., Chen Jihua. Magnesium Alloy[M], 2004 Beijing Chemical Industry Press

[4]

Ishihara S., Nan Z., Goshima Takahito. Effect of Microstructure on Fatigue Behavior of AZ31 Magnesium Alloy[J]. Mater. Sci. Eng., A, 2007, 468–470: 214-222.

[5]

Nan Z. Y., Ishihara S., McEvily A. J., . On the Sharp Bend of the S-N Curve and the Crack Propagation Behavior of Extruded Magnesium Alloy[J]. Scripta Mater., 2007, 56: 649-652.

[6]

Xu D. K., Liu L., Xu Y. B., . The Fatigue Crack Propagation Behavior of the Forged Mg-Zn-Y-Zr Alloy[J]. J. Alloys Compd., 2007, 431: 107-111.

[7]

Tokaji K., Kamakura M., Ishiizumi Y., . Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy[J]. Int. J. Fatigue, 2004, 26: 1 217-1 224.

[8]

Nan Z. Y., Ishihara S., Goshima T., . Scanning Probe Microscope Observations of Fatigue Process in Magnesium Alloy AZ31 Near the Fatigue Limit[J]. Scripta Mater., 2004, 50: 429-434.

[9]

Nie D.-f., Zhao Jie. Fatigue Crack Growth and Overload Effect in AZ31 Magnesium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(5): 771-776.

[10]

You L., Farid T., Michael Gharghouri. Study of Fatigue Crack Incubation and Propagation Mechanisms in a HPDC AM60B Magnesium Alloy[J]. J. Alloys Compd., 2008, 466: 214-227.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/