Controlled synthesis of polycrystalline nickel oxalate nanofibers by the mild thermal precipitation and aging process

Tao Li , Ying Liu , Tongjiang Peng , Guohua Ma , Xiaojiao Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1041 -1043.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1041 -1043. DOI: 10.1007/s11595-011-0359-1
Article

Controlled synthesis of polycrystalline nickel oxalate nanofibers by the mild thermal precipitation and aging process

Author information +
History +
PDF

Abstract

Via a mild thermal precipitation and aging process, polycrystalline hydrated nickel oxalate nanofibers were synthesized using nickel chloride and ammonium oxalate as raw materials, with pH 8.0 and temperature 60 °C. Atomic absorption spectrometer (AAS), organic elemental analyzer (OEA), fourier transform infrared spectroscopy (FT-IR), thermogravimetry-derivative thermogravimetry (TG-DTG), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the products properties. The results demonstrated that the product was hydrated nickel oxalate. The sizes of hydrated nickel oxalate nanofibers were 100–150 nm in diameter, and 0.5–5.0 μm in length. A rational mechanism based on coordination self-assembly was discussed for the selective formation of the polycrystalline hydrated nickel oxalate nanofibers.

Keywords

inorganic materials / nanofiber / precipitation / optical spectroscopy / thermal analysis / transmission electron microscopy

Cite this article

Download citation ▾
Tao Li, Ying Liu, Tongjiang Peng, Guohua Ma, Xiaojiao Yang. Controlled synthesis of polycrystalline nickel oxalate nanofibers by the mild thermal precipitation and aging process. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1041-1043 DOI:10.1007/s11595-011-0359-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fendler J. H., Meldrum F. C. The Colloid Chemical Approach to Nanostructured Materials [J]. Adv. Mater., 1995, 7: 607-632.

[2]

Lakshmi B. B., Dorhout P. K., Martin C. R. Sol-Gel Template Synthesis of Semiconductor Nanostructures [J]. Chem. Mater., 1997, 9: 857-862.

[3]

Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science, 2002, 298: 2176-2179.

[4]

Gudiksen M. S., Lauhon L. J., Wang J., . Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics [J]. Nature, 2002, 415: 617-620.

[5]

Li M.Y., Dong W. S., Liu C. L., . Ionic Liquid-Assisted Synthesis of Copper Oxalate Nanowires and Their Conversion to Copper Oxide Nanowires[J]. J. Cryst. Growth, 2008, 310: 4 628-4 634.

[6]

Khan A. S., Devore T. C., Reed W. F. Growth of the Transition Metal Oxalates in Gels [J]. J. Cryst. Growth, 1976, 35: 337-339.

[7]

Zou D., Xu C., Luo H., . Synthesis of Co3O4 Nanoparticles via an Ionic Liquid-Assisted Methodology at Room Temperature [J]. Mater. Lett., 2008, 62: 1976-1978.

[8]

Vaidya S., Ahmad T., Agarwal S., . Nanocrystalline Oxalate/Carbonate Precursors of Ce and Zr and Their Decompositions to CeO2 and ZrO2 Nanoparticles [J]. J. Am. Ceram. Soc., 2007, 90: 863-869.

[9]

Vaidya S., Rastogi P., Agarwal S., . Nanospheres, Nanocubes, and Nanorods of Nickel Oxalate: Control of Shape and Size by Surfactant and Solvent [J]. J. Phys. Chem. C, 2008, 112: 12610-12615.

[10]

Luo H., Zou D., Zhou L., . Ionic Liquid-Assisted Synthesis of Transition Metal Oxalates via One-Step Solid-State Reaction [J]. J. Alloys Compd., 2009, 481: L12-L14.

[11]

Wang W., Liu Y., Xu C., . Synthesis of NiO Nanorods by a Novel Simple Precursor Thermal Decomposition Approach [J]. Chem. Phys. Lett., 2002, 362: 119-122.

[12]

Fan Y., Zhang C., Wu J., . Composition and Morphology of Complicated Copper Oxalate Powder [J]. Trans. Naofeffous Met. Soc. China, 2010, 20: 165-170.

[13]

Zhang C., Wu J., Zhan J., . Precursor Synthesis of Fibrillar Nanocrystalline Nickel Powder [J]. Nonferrous Metals, 2003, 55: 25-29.

[14]

Xu C., Xu G., Wang G. Preparation and Characterization of NiO Nanorods by Thermal Decomposition of NiC2O4 Precursor [J]. J. Mater. Sci., 2003, 38: 779-782.

[15]

Luo Y., Zhang J., Shen Y., . Preparation and Magnetic Properties of Nickel Nanorods by Thermal Decomposition Reducing Methods [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: s96-s100.

[16]

Garcia-Clavel M. E., Martinez-Lope M. J., Casais-Alvarez M. T. Thermal Study of NiC2O4·2H2O Obtained by A Solid State Reaction at Room Temperature and Normal Pressure [J]. Thermochim. Acta, 1987, 118: 123-134.

[17]

Li G. J., Huang X. X., Shi Y., . Preparation and Characteristics of Nanocrystalline NiO by Organic Solvent Method [J]. Mater. Lett., 2001, 51: 325-330.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/