Transport properties of LCMO granular films deposited by the pulsed electron deposition technique

Leiming Chen , Bin Xu , Yan Zhang , Zhenping Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1027 -1031.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (6) : 1027 -1031. DOI: 10.1007/s11595-011-0356-4
Article

Transport properties of LCMO granular films deposited by the pulsed electron deposition technique

Author information +
History +
PDF

Abstract

By finely controlling the deposition parameters in the pulsed electron deposition process, granular La2/3Ca1/3MnO3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spinpolarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR

Keywords

colossal magnetoresistance / granular film / transport properties

Cite this article

Download citation ▾
Leiming Chen, Bin Xu, Yan Zhang, Zhenping Chen. Transport properties of LCMO granular films deposited by the pulsed electron deposition technique. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(6): 1027-1031 DOI:10.1007/s11595-011-0356-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heremans J. Solid State Magnetic Field Sensors and Applications[J]. J.Phys.D, 1993, 26(8): 1 149-1 168.

[2]

Smonds J. L. Magnetoelectronics Today and Tomorrow[J]. Phys. Today, 1995, 48(4): 26-32.

[3]

Nagaev E. L. Colossal-Magnetoresistance Materials: Manganites and Conventional Ferromagnetic Semiconductors [J]. Physics Reports, 2001, 346(6): 387-531.

[4]

Zener C. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure[J]. Phys. Rev., 1951, 82(3): 403-405.

[5]

Wang H. Y., Cheong S. W., Pong N., . Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3[J]. Phys. Rev. Lett., 1996, 77(10): 2 041-2 044.

[6]

Bhar G. C., Chatterjee U., Tsukamoto K., . Magnetoresistance Effect in Bulk Samples of La0.67Ca0.33MnO3 under a low Magnetic Field[J]. J. Magn. Magn. Mater., 1998, 188(1–2): 180-184.

[7]

Rivas J., Hueso L. E., Fondado A., . Low Field Magnetoresistance Effects in Fine Particles of La0.67Ca0.33MnO3 Perovskites[J]. Journal of Magnetism and Magnetic Materials, 2000, 221(1–2): 57-62.

[8]

Amils X., Nogues J., Suriñach S., . Tailoring of Paramagnetic (Structurally Ordered) Nanometric Grains Separated by Ferromagnetic (Structurally Disordered) Grain Boundaries: Isolating Grain-Boundary Magnetic Effects[J]. Phys. Rev. B, 2001, 63(5): 052402

[9]

Pattabiraman M., Ramakrishna A., Singh N. P., . Phase Competition Driven Temperature Broadening of Colossal Magnetoresistance in La0.815Sr0.185MnO3[J]. Journal of Alloys and Compounds, 2008, 452(2): 230-233.

[10]

Sheng Z. G., Sun Y. P., Zhu X. B., . In Situ Growth of C-Axis-Oriented La2/3Sr1/3MnO3−δ? Thin Films on Si(001) [J]. Solid State Communications, 2007, 141(5): 239-242.

[11]

Shoichiro N., Naoomi Y., Hitosugi T., . Fabrication of Highly Conductive Ta-Doped SnO2 Polycrystalline Films on Glass Using Seed-Layer Technique by Pulse Laser Deposition[J]. Thin Solid Films, 2010, 518(11): 3 93-3 096.

[12]

Mathis J. E., Christen H. M. Factors That Influence Particle Formation during Pulsed Electron Deposition of YBCO Precursors[J]. Physica C, 2007, 459(1–2): 47-51.

[13]

Chen L.-M., Li P.-G., Fu X., . Ordered Nanostructures on La-Sr-Cu-O Thin Films Deposited by Pulsed Electron Beam Technique[J]. Acta Physica Sinica, 2005, 54(6): 2843-2847.

[14]

Guo Y.-F., Chen L.-M., GUO X., . Factors Affecting The Superconductivity in The Process of Depositing Nd1.85Ce0.15CuO4−Δ by The Pulsed Electron Deposition Technique[J]. Science In China Series G, 2007, 37(4): 458-463.

[15]

Guo Y. F., Chen L. M., Li P. G., . Different Parameters for The Deposition of La1.85Sr0.15CuO4 and Nd1.85Ce0.15CuO4 Superconducting Films by The Novel Pulsed Electron Deposition Technique[J]. Physica C, 2007, 453(1–2): 64-69.

[16]

Balcells L., Martínez B., Sandiumenge F., . Magnetotransport Properties of Nanometric La2/3Sr1/3MnO3 Granular Perovskites[J]. Journal of Magnetism Magnetic Materials, 2000, 211(1–3): 193-199.

[17]

Gupta A., Gong G. Q., Xiao G., . Grain-Boundary Effects on The Magnetoresistance Properties of Perovskite Manganite Films[J]. Phys. Rev. B, 1996, 54(22): R15 629-15 632.

[18]

Hong N. H., Sakai J., Noudem J. G., . Ru-Doped La0.7(Ba-Ca)0.3MnO3 Thin Films:: Unexpected Ferromagnetic Insulating Phase and Positive Magnetoresistance[J]. J. Magn. Magn. Mater., 2004, 272–276(3): 1 826-1 828.

[19]

Zhang X. X., Hernandez J. M. Observation of Colossal Positive and Negative Magnetoresistance in Perovskite-Type Manganese Oxide La0.67Ca0.33MnO3 [J]. Europhys.Lett., 1999, 47(4): 487-493.

[20]

Rauwel Buzin E., Prellier W., Simon W., . Control of The Colossal Magnetoresistance by Strain Effect in Nd0.5Ca0.5MnO3 Thin Films [J]. Appl. Phys. Lett., 2001, 79(5): 647-650.

[21]

Zhong J. P., Zhao B. R., Yuan J., . Positive Magnetoresistance Feature in Ultrathin La0.67Ca0.33MnO3 Films[J]. Solid State Communications, 2005, 136(9–10): 528-532.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/