NMR research on cement clinker and its structures in early age hydration

Xiaojun Wang , Wenwen Zhu , Hui Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 972 -977.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 972 -977. DOI: 10.1007/s11595-011-0347-5
Article

NMR research on cement clinker and its structures in early age hydration

Author information +
History +
PDF

Abstract

Clinker has long been regarded as a critical factor for cement hydration and solidification. α-C2S and β-C2S in 2CaO·SiO2(C2S) phase and C3S Monoclinic 1(C3S M1) and C3S Monoclinic 3 (C3S M3) in 3CaO·SiO2 (C3S) phase were clearly recorded in the 29Si MAS NMR spectra. The content of C3S phase in the clinker deduced from the fine peak analysis coincides with the phase quantification analysis calculated by the Taylor-Bogue method based on XRF, which also accords to the statistical data in industrial production. NMR provides a proof that C3S M1 and β-C2S phases have a prior reaction in the early age hydration of clinker, and demonstrates that aluminum coordination changes from tetracoordinated 4CaO·Al2O3·Fe2O3(C4AF) to hexacoordinated [Ca2Al(OH)6](SO4)0.3·3H2O(Aft) in one day hydration and changes to the 3CaO·Al2O3·CaSO4·nH2O (Afm) in a seven-day hydration.

Keywords

NMR / clinker / cement / hydration

Cite this article

Download citation ▾
Xiaojun Wang, Wenwen Zhu, Hui Wang. NMR research on cement clinker and its structures in early age hydration. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 972-977 DOI:10.1007/s11595-011-0347-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Edward C. L., Morgan R., Norman L., . Correlation of Cement Performance Measurements with C3S/C2S Ratio Determined by Solid State Si-29 NMR Measurements[J]. Ind. and Eng. Chem. Res., 2009, 47(15): 5 456-5 463.

[2]

Raupp-Pereira F., Segadaes A. M., Silva A. S., . Al-27 And Si-29 NMR and XRD Characterization of Clinkers: Standard Phase and New Waste Based Formulation[J]. Adv. in Appl. Ceram., 2008, 107(1): 37-45.

[3]

Mou S., Zheng Zhaojia. The Early Strength of Slag Cements with Addition of Hydrate Microcrystals[J]. J. Wuhan Univ. of Tech.-Mater. Sci. Ed., 2002, 17(2): 83-85.

[4]

Edward C. L., Alemany L. B., Barron A. R. Solid-State Si-29 NMR Analysis of Cement: Comparing Different Methods of Relaxation Analysis Determining Spin-Lattice Relaxation Times to Enable Determination of The C3S/C2S Ratio[J]. Ind. and Eng. Chem. Res., 2007, 46(15): 5 122-5 130.

[5]

Li D., Song Xuyan. The Mechanical Properties and Hydration Characteristics of Cement Pastes Containing Added-Calcium Coal Gangue[J]. J. Wuhan Univ. of Tech.-Mater. Sci. Edi., 2008, 23(2): 254-258.

[6]

De La Torre A. G., De Vera R. N., Cuberos A. J. M., . Crystal Structure of Low Magnesium-Content Alite: Application to Rietveld Quantitative Phase Analysis[J]. Cem. and Concr. Res., 2008, 38(11): 1 261-1 269.

[7]

De Noirfontaine M. N., Dunstetter F., Courtial M., . Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 2. Modelling Alite for Rietveld Analysis, An Industrial Challenge[J]. Cem. and Concr. Res., 2006, 36(1): 54-64.

[8]

Dunstetter F., De Noirfontaine M. N., Courtial M. Polymorphism of Tricalcium Silicate, the Major Compound of Portland Cement Clinker 1. Structure Data: Review and Unified Analysis[J]. Cem. and Concr. Res., 2006, 36(1): 39-53.

[9]

Courtial M., De Noirfontaine M. N., Dunstetter F., . Polymorphism of Tricalcium Silicate in Portland Cement: a Fast Visual Identification of Structure and Superstructure[J]. Powder Diffr., 2003, 18(1): 7-15.

[10]

Skibsted J., Hall C., Jakobsen H. J., . Structure and Perform. of Cements[M], 2002 London Spon Press 457-477.

[11]

Andersen M. D., Jakobsen H. J., Skibsted J. Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H): Phase of Hydrated Portland Cements: A High-Field 27Al and 29Si MAS NMR Study[J]. Inorg. Chem., 2003, 42(7): 2 280-2 287.

[12]

Poulsen S. L., Kocaba V., Le Saout, . Improved Quantification of Alite and Belite in Anhydrous Portland Cements by Si-29 NMR: Effects of Paramagnetic Ions[J]. Solid State Nucl. Magn. Reson., 2009, 36(1): 32-34.

[13]

Aono Y., Matsushita F., Shibata S., . Nano-Structural Changes of C-S-H in Hardened Cement Paste During Drying at 50 Degrees[J]. J. Adv. Concr. Technol., 2007, 5(3): 313-323.

[14]

Korb J. P. NMR and Nuclear Spin Relaxation of Cement and Concrete Materials[J]. Curr. Opin. in Colloid & Interface Sci., 2009, 14(3): 192-202.

[15]

Skibsted J., Hall C. Characterization of Cement Minerals, Cement and Their Reaction Products at the Atomic and Nano Scale[J]. Cem. and Concr. Res., 2008, 38(2): 205-225.

[16]

Alesiani M., Pirazzoli I., Maraviglia B. Factors Affecting Early-Age Hydration of Ordinary Portland Cement Studied by NMR: Fineness, Water-to-Cement Ratio and Curing Temperature[J]. Appl. Magn. Reson., 2007, 32(3): 385-394.

[17]

Skibsted J., Andersen M. D., Jacobsen H. J. Application of Solid-State Nuclear Magnetic Resonance (NMR): in Studies of Portland Cement-Based Materials[J]. Cem. and Concr. Res., 2007, 37(6): 631-638.

[18]

Shih J. Y., Chang T. P., Hsiao T. C. Effect of Nanosilica on Characterization of Portland Cement Composite[J]. Mater. Sci. and Eng. A-Structure Mater. Prop. Microstruct. and Process., 2006, 424(1–2): 266-274.

[19]

Hilbig H., Kohler F. H., Schiessl P. Quantitative Si-29 MAS NMR Spectroscopy of Cement and Silica Fume Containing Paramagnetic Impurities[J]. Cem. and Concr. Res., 2006, 36(2): 326-329.

[20]

Cano-Barrita P. F. D., Marble A. E., Balcom B. J., . Embedded NMR Sensors to Monitor Evaporable Water Loss Caused by Hydration and Drying in Portland Cement Mortar[J]. Cem. and Concr. Res., 2009, 39(4): 324-328.

[21]

Faure P. F., Rodts S. Proton NMR Relaxation as a Probe For Setting Cement Pastes[J]. Magn. Reson. Imag., 2008, 26(8): 1 183-1 196.

[22]

Mcdonald P. J., Mitchell J., Mulheron M., . Two-Dimensional Correlation Relaxation Studies of Cement Pastes[J]. Magn. Reson. Imag., 2007, 25(4): 470-473.

[23]

Karakosta E., Diamantopoulos G., Katsiotis M. S., . In Situ Monitoring of Cement Gel Growth Dynamics. Use of A Miniaturized Permanent Halbach Magnet for Precise H-1 NMR Studies[J]. Ind. and Eng. Chem. Res., 2010, 49(2): 613-622.

[24]

Pirazzoli I., Alesiani M., Capuani S., . The Influence of Superplasticizers on the First Steps of Tricalcium Silicate Hydration Studied by NMR Techniques[J]. Magn. Reson. Imag., 2005, 23(2): 277-284.

[25]

Gorce J. P., Milestone N. B. Probing the Microstructure and Water Phases in Composite Cement Blends[J]. Cem. and Concr. Res., 2007, 37(3): 310-318.

[26]

Gombia M., Bortolotti V., De Carlo Boris. Nanopore Structure Buildup during Endodontic Cement Hydration Studied by Time-Domain Nuclear Magnetic Resonance of Lower and Higher Mobility (1):H[J]. J. Phys. Chem. B, 2010, 114(5): 1 767-1 774.

[27]

Rucker-Gramm P., Beddoe R. E. Effect of Moisture Content of Concrete on Water Uptake[J]. Cem. and Concr. Res., 2010, 40(1): 102-108.

[28]

Love C. A., Richardson I. G., Brough A. R. Composition and Structure of C-S-H in White Portland Cement −20% Metakaolin Pastes Hydrated at 25 °C[J]. Cem. and Concr. Res., 2007, 37(2): 109-117.

[29]

Le Saout G., LÉColier E., Rivereau A., . Chemical Structure of Cement Aged at Normal and Elevated Temperatures and Pressures: Part I. Class G Oilwell Cement[J]. Cem. and Concr. Res., 2006, 36(1): 71-78.

[30]

Brunet F., Bertani P., Charpentier T., . Application of Si-29 Homonuclear and H-1-Si-29 Heteronuclear NMR Correlation to Structural Studies of Calcium Silicate Hydrates[J]. J. Phys. Chem. B., 2004, 108(40): 15 494-15 502.

[31]

Dyson H. M., Richardson I. G., Brough A. R. A Combined 29Si MAS NMR and Selective Dissolution Technique for the Quantitative Evaluation of Hydrated Blast Furnace Slag Cement Blends[J]. J. Am. Ceram. Soc., 2007, 90(2): 598-602.

[32]

Tran T. T., Herfort D., Jakobsen H. J., . Site Preferences of Fluoride Guest Ions in the Calcium Silicate Phases of Portland Cement From 29Si{19F} CP-REDOR NMR Spectroscopy[J]. J. Am. Chem. Soc., 2009, 131(40): 14 170-14 171.

[33]

Stanek T., Sulovsky P. The Influence of the Alite Polymorphism on the Strength of the Portland Cement[J]. Cem. and Conc. Res., 2002, 32(7): 1 169-1 175.

[34]

Chen Q. Y., Tyrer M., Hills C. D., . Immobilization of Heavy Metal in Cement-Based Solidification / Stabilization: a Review[J]. Waste Management, 2009, 29(1): 390-430.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/