In vitro blood compatibility of polyethylene terephthalate with covalently bounded hirudin on surface

Fang Li , Jin Wang , Nan Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 950 -954.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 950 -954. DOI: 10.1007/s11595-011-0343-9
Article

In vitro blood compatibility of polyethylene terephthalate with covalently bounded hirudin on surface

Author information +
History +
PDF

Abstract

Polyethylene terephthalate (PET, Dacron) was modified by surface immobilization of hirudin with glutaraldehyde(GA) as coupling reagent to improve the blood compatibility. Hirudin-immobilized PETs were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The blood compatibility of the PETs was evaluated by platelet adhesion evaluation and fibrinogen conformational change measurements in vitro. The results showed the decrease of platelet adhesion and activation on hirudin-immobilized PET with increasing of glutaraldehyde concentration. Fibrinogen experiment showed that fibrinogen adherence and conformational changes of PET-HRD were less than those of untreated PET, which made the materials difficult to form thrombus. The proper reason of blood compatibility improvement was low interface tension between hirudin-immobilized PETs and blood, as well as blood proteins, and low ratio of dispersive/polar component of the surface energy(γ sd/γ sp) and high hydrophilicity.

Keywords

hirudin / blood compatibility / poly(ethylene terephthalate) (PET) / interface tension / surface energy

Cite this article

Download citation ▾
Fang Li, Jin Wang, Nan Huang. In vitro blood compatibility of polyethylene terephthalate with covalently bounded hirudin on surface. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 950-954 DOI:10.1007/s11595-011-0343-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dewaniee M. K., Gross D. R., Zhai P., . Thrombogenicity of Polyethylene Oxide-bonded Dacron Sewing Ring in a Mechanical Heart Valve[J]. J. Heart Valve Dis., 1999, 8(3): 324-30.

[2]

Karck M., Forgione L., Haverich A. The Efficacy of Controlled Antibiotic Release for Prevention of Polyethyleneterephthalate-(Dacron-) Related Infection in Cardiovascular Surgery[J]. Clinical Materials, 1993, 13(1–4): 149-154.

[3]

Phaneuf M. D., Dempsey D. J., Bide M. J., . Coating of Dacron Vascular Grafts with an Ionic Polyurethane: a Novel Sealant With Protein Binding Properties[J]. Biomaterials, 2001, 22(5): 463-469.

[4]

Oyane A., Ka sa ha ra M., Ic hinose N., . Preparation of La Minin-apatite-polymer Composites Using Meta Stable Calcium Phosphate Solutions[J]. J. Wuhan Univ. Techn., 2005, 20: 220-222.

[5]

Vindigni A., White C. E., Komives E. A., . Energetics of Thrombin-thrombomodulin Interaction[J]. Biochemistry, 1997, 36(22): 6 674-6 681.

[6]

Fenton J. W., Villanueva G. B., Ofosu F. A., . Thrombin Inhibition by Hirudin: How Hirudin Inhibits Thrombin[J]. Haemostasis, 1991, 21(1): 27-31.

[7]

Kim S. W., Jacobs H. Design of Nonthrombogenic Polymer Surfaces for Blood-contacting Medical Devices[J]. Blood Purification, 1996, 14(5): 357-72.

[8]

Seifert B., Romaniuk P., Groth T. H. Covalent Immobilization of Hirudin Improves the Haemocompatibility of Polylactidepolyglycolide in Vitro[J]. Biomaterials, 1997, 18(22): 1 495-1 502.

[9]

Roos A., Klee D., Schuermann K., . Development of a Temperature Sensitive Drug Release System for Polymeric Implant Devices[J]. Biomaterials, 2003, 24(24): 4 417-4 423.

[10]

Mohri H., Ohkubo T. Effects of Hybrid Peptide Analogs to Receptor Recognition Domains on Alpha-and Gamma-chains of Human Fibrinogen on Fibrinogen Binding to Platelets[J]. Thromb Haemost., 1993, 69(5): 490-495.

[11]

Gibbins J. M. Platelet Adhesion Signalling and the Regulation of Thrombus Formation[J]. J. Cell Sci., 2004, 117: 3 415-3 425.

[12]

Groth T. H., Campbell E. J., Herrmann K., . Application of Enzyme Immunoassays for Testing Haemocompatibility of Biomedical Polymers[J]. Biomaterials, 1995, 16(13): 1 009-1 015.

[13]

Zhao A. S., Yang P., Leng Y. X., . Research on Platelet Adsorption Behavior Using Enzyme Immunoassays and LDH Testing[J]. Key Eng. Mater., 2005, 288–289: 515-520.

[14]

Alkhamis T. M., Beissinger R. L., Chediak J. R. Effect of Hirudin on Platelet Deposition to an Artificial Surface During Low-stress Shear Flow of Whole Blood[J]. Biomaterials, 1993, 14(11): 865-870.

[15]

Gorbet M. B., Sefton M. V. Biomaterial-associated Thrombosis: Roles of Coagulation Factors, Complement, Platelets and Leukocytes[J]. Biomaterials, 2004, 25(26): 5 681-5 703.

[16]

Yang P., Huang N., Leng Y. X., . Activation of Platelets Adhered on Amorphous Hydrogenated Carbon (a–C: H) Films Synthesized by Plasma Immersion Ion Implantation-deposition(PIII-D) [J]. Biomaterials, 2003, 24(17): 2 821-2 829.

[17]

Huang N., Yang P., Leng Y. X., . Hemocompatibility of Titanium Oxide Films[J]. Biomaterials, 2003, 24(13): 2 177-2 187.

[18]

Chen J. Y., Leng Y. X., Tian X. B., . Antithrombogenic Investigation of Surface Energy and Optical Bandgap and Hemocompatibility Mechanism of Ti(Ta)+5)O2 Thin Films[J]. Biomaterials, 2002, 23(12): 2 545-2 552.

[19]

Agathopoulos S., Nikolopoulos P. Wettability and Interfacial Interactions in Bioceramic-body-liquid Systems[J]. J. Biomed. Mater. Res., 1995, 29(4): 421-429.

[20]

Meng Q. Y., Shen H. The First Six Cases — the Role of Hirudin and Its Clinical Application[J]. Integrated Traditional Chinese and Western Medicine in Practice of Critical Care Medicine, 2000, 3: 191-192.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/