Non-isothermal crystallization kinetics of kaolin modified polyester

Ruixin Zhang , Mingbo Gu , Guoqiang Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 945 -949.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 945 -949. DOI: 10.1007/s11595-011-0342-x
Article

Non-isothermal crystallization kinetics of kaolin modified polyester

Author information +
History +
PDF

Abstract

Fiber-class modified kaolin and PET have been blended in the twin-screw and granulated to chips containing 4 wt% of kaolin. Non-isothermal crystallization process of kaolin modified polyester was investigated using a differential scanning calorimetry (DSC), and the addition of kaolin enhances either the melting temperature (T m) or the crystallization temperature (T c). The morphology of kaolin modified polyester, the melt of which is cooled at different cooling rate, was observed by scanning electron microscope (SEM). The relationship between T c and cooling rate F was studied. Semi-crystalline phase t 1/2 makes an exponential decline with increasing F, and the higher the cooling rate, the shorter the time of crystallization completion. Non-isothermal crystallization kinetics parameters and the activation energy were calculated, indicating that the higher rate of cooling needs the higher relative crystallinity in the unit crystallization time, the crystallization rate increased while speeding up the temperature reduction, and the activation energy ΔE was calculated to be −204.1566 kJ/mol for the non-isothermal crystallization processes by the Kissinger’s methods.

Keywords

kaolin / polyester / crystallization kinetics / non-isothermal

Cite this article

Download citation ▾
Ruixin Zhang, Mingbo Gu, Guoqiang Chen. Non-isothermal crystallization kinetics of kaolin modified polyester. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 945-949 DOI:10.1007/s11595-011-0342-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang W. Z., Yin G. F., Zhou D. L., . Surface-modified Biphasic Calcium Phosphate/poly(l-lactide) Biocomposite[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2009, 24(1): 81-86.

[2]

Li M. C., Ma C. A., Zhong Y. J. Preparation and Electrocatalytic Activity of Polyaniline-poly (propylene oxide) Modified by Pt Nanoparticles[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(4): 9-11.

[3]

Cheng X. H., Xue Y. J., Shangguan Q. Q. Tribological Properties of Polytetrafluoroethylene Composites Filled with Rare Earths Modified Glass Fibers[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(2): 61-65.

[4]

Piccarolo S., Brucato V., Kiflie Z. Non-isothermal Crystallization Kinetics of PET[J]. Polym. Eng. Sci., 2000, 40: 1 263-1 272.

[5]

Jabarin S. A. Crystallization Kinetics of Poly(ethylene terephthalate). III. Effect of Moisture on the Crystallization Behavior of PET from the Glassy State[J]. J. Appl. Polym. Sci., 1987, 34: 103-108.

[6]

Changchien G. P., Denn M. M. Isothermal Crystallization Kinetics of Poly(ethy1ene terephthalate) in Blends with A Liquid Crystalline Polyester (Vectra A)[J]. Polym. Advan. Technol., 1996, 7: 168-172.

[7]

Gupta V. B., Jain A. K., Radhakrishnan J., . Crystal Perfection in Axially Oriented Poly(ethy1ene terephthalate) Fibers and Films and Its Dependence on Process Variables[J]. J. Macromol. Sci. B, 1994, 33: 185-207.

[8]

Sonnenschein M. F., Kotliar A. M., Roland C. M. Poly(ethylene terephthalate) Crystallization as A Method for Microlithography[J]. Polym. Eng. Sci., 2004, 30: 1 165-1 170.

[9]

Zarraga A., Muñoz M. E., Peñal J. J., . The Role of A Dechlorinated PVC as Compatibiliser for PVC/Polyethylene Blends[J]. Polym. Bull., 2002, 48: 283-290.

[10]

Jun Y. K., Hawe S. P., Seong H. K. Multiwall-carbon-nanotubereinforced Poly(ethyleneterephthalate) Nanocomposites by Melt Compounding[J]. J. Appl. Polym. Sci., 2007, 103: 1 450-1 457.

[11]

Baranov V. G., Kenarov A. V., Volkov T. I. Morphology and Kinetics Studies of Spherulitization of Polyethylene Terephthalate[J]. J. Polym. Sci. C, 1970, 30: 271-281.

[12]

Misra A., Stein R. S. Light Scattering Studies of the Early Stages of the Crystallization of Poly(ethylene terephthalate)[J]. J. Polym. Sci. B, 1972, 10: 473-477.

[13]

Ge C. H., Shi L. Y., Yang H., . Nonisothermal Melt Crystallization Kinetics of Poly(ethylene terephthalate)/Barite Nanocomposites[J]. Polym. Composite, 2010, 31: 1 504-1 514.

[14]

Sukumar R., Menon A. R. R. Organomodified Kaolin as A Reinforcing Filler for Natural Rubber[J]. J. Appl. Polym. Sci., 2008, 107: 3 476-3 483.

[15]

Cheng H. F., Liu Q. P., Wang L. J., . The Research Progress of Kaolin in China[J]. Geol. Chem. Mineral., 2008, 2: 125-128.

[16]

Zhao C. Y., Ye Z. W., Deng C. H. Kaolinite-improved Polyester Fiber[J]. China Synth. Tech. Appl., 1995, 10: 35-38.

[17]

Qin C. X. Crystallization Kinetics Research of PA1212[J]. China Synth. Fiber. Ind., 2007, 30: 18-21.

[18]

Zhang Q. X., Mo Z. S. Isothermal and Nonisothermal Crystallization Kinetics of Nylon 66[J]. Chinese J. Polym. Sci., 2001, 87: 237-246.

[19]

Ozawa T. Kinetics of Non-isothermal Crystallization[J]. Polym., 1971, 12: 150-198.

[20]

Avrami M. Granulation, Phase Change and Microstructure Kinetics of Phase Change. III[J]. J. Chem. Phys., 1941, 9: 177-184.

[21]

Peggy C., Hong S. D. Crystallization Behaviour of Poly(etherether-ketone)[J]. Polym., 1986, 27: 1 183-1 189.

[22]

Kissinger H. E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J]. J. Res. Nat. Bur. Stand., 1956, 57: 217-219.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/