Mechanical hysteresis of hexagonal boron nitride

Aiguo Zhou , Haoran Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 935 -938.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 935 -938. DOI: 10.1007/s11595-011-0340-z
Article

Mechanical hysteresis of hexagonal boron nitride

Author information +
History +
PDF

Abstract

Hexagonal boron nitride (h-BN) is an important structural material with layered microstructure. Because of the plastic anisotropy, this material shows obvious mechanical hysteresis (nonlinear elastic deformation). There are hysteretic loops at the cyclical load-unload stress-strain curves of h-BN. Consequently, two hot-pressed h-BN cylinders with different textures were studied. The mechanical hysteresis is heavily texture-dependent. The area of hysteretic loop is linearly related with the square of loading stresslevel. Two minor loops attached on the hysteretic loops with the same extreme stresses have congruent shapes. It can be concluded that the mechanical hysteresis of h-BN can be explained by a Kink Nonlinear Elastic model developed from the study of a ternary carbide Ti3SiC2.

Keywords

boron nitride / nonlinear elastic deformation / kink band / texture

Cite this article

Download citation ▾
Aiguo Zhou, Haoran Li. Mechanical hysteresis of hexagonal boron nitride. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 935-938 DOI:10.1007/s11595-011-0340-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rubio A., Corkill J., Cohen M. Theory of Graphitic Boron Nitride Nanotubes[J]. Phys. Rev. B, 1994, 49(7): 5 081-5 084.

[2]

Cardinale G. F., Medlin D. L., Mirkarimi P. B., . Orientationdependence of Elastic Strain Energy in Hexagonal and Cubic Boron Nitride Layers in Energetically Deposited BN Films[J]. J. Vacu. Sci. Tech. A, 1997, 15(1): 196-200.

[3]

Loiseau A., Willaime F., Demoncy N., . Boron Nitride Nanotubes[J]. Carbon, 1998, 36(5–6): 743-752.

[4]

Mathew V. M., Menon C. S., Jayachandran K. P. Third-order Elastic Constants and Pressure Derivatives of the Secondorder Elastic Constants of Hexagonal Boron Nitride[J]. J. Mater. Sci., 2002, 37(24): 5 237-5 240.

[5]

Mickelson W., Aloni S., Han W. Q., . Packing C60 in Boron Nitride Nanotubes[J]. Science, 2003, 300(5618): 467-469.

[6]

Barsoum M. W., Zhen T., Kalidindi S. R., . Fully Reversible, Dislocation-based Compressive Deformation of Ti3SiC2 to 1 GPa[J]. Nat. Mater., 2003, 2: 107-111.

[7]

Barsoum M. W., Murugaiah A., Kalidindi S. R., . Kinking Nonlinear Elastic Solids, Nanoindentations, and Geology[J]. Phys. Rev. Lett., 2004, 92: 255508/1-4.

[8]

Barsoum M. W., Murugaiah A., Kalidindi S. R., . Kink Bands, Nonlinear Elasticity and Nanoindentations in Graphite[J]. Carbon, 2004, 42: 1 435-1 445.

[9]

Barsoum M. W., Zhen T., Zhou A., . Microscale Modeling of Kinking Nonlinear Elastic Solids[J]. Phys. Rev. B, 2005, 71: 134101/1-8.

[10]

M M. F., Zhou A. G., Barsoum M. W. Mechanical Damping in Porous Ti3SiC2[J]. Acta Mater., 2006, 54(19): 5 261-5 270.

[11]

Zhou A. G., Barsoum M. W., Basu S., . Incipient and Regular Kink Bands in Dense and 10 vol.% Porous Ti2AlC[J]. Acta Mater., 2006, 54: 1 631-1 639.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/