Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field

Dengbin Chen , Yutao Zhao , Guirong Li , Meng Zheng , Gang Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 920 -925.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 920 -925. DOI: 10.1007/s11595-011-0337-7
Article

Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field

Author information +
History +
PDF

Abstract

In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field, and the mechanism and kinetic model of insitu melt chemical reaction are investigated. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80–120 nm. The results of icewater quenched samples show that the whole process contains four stages, and the overall in-situ reaction time is 10 minutes. The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes), and by the particulate diffusing in later stage. The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion. Furthermore, the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.

Keywords

in-situ nanocomposites / high intensity ultrasonic field / reactive mechanism / kinetic model

Cite this article

Download citation ▾
Dengbin Chen, Yutao Zhao, Guirong Li, Meng Zheng, Gang Chen. Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 920-925 DOI:10.1007/s11595-011-0337-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fan X. G., Jiang D. M., Meng Q. C., . The Micro Structural Evolution of An Al-Zn-Mg-Cu Alloy during Homogenization[J]. Materials Letters, 2006, 60(12): 1 475-1 479.

[2]

Shen K., Yin Z. M., Wang T. On Spinodal Decomposition in Ageing 7055 Aluminum Alloys[J]. Materials Science and Engineering: A, 2008, 477(1–2): 395-398.

[3]

Zheng L. J., Chen C. Q., Zhou T. T., . Structure and Properties of Ultrafine-grained Al-Zn-Mg-Cu and Al-Cu-Mg-Mn Alloys Fabricated by ECA Pressing Combined with Thermal Treatment[J]. Materials Characterization, 2003, 49(5): 455-461.

[4]

Jin Y. X., Li J. G., Lee J. M., . Dry Sliding Friction and Wear Properties and Wear Mechanism of SiCP/Al Composites[J]. Journal of Wuhan University of Technolotgy, 2009, 24: 24-28.

[5]

Yuan W. H., Zhang J., Zhang C. C., . Processing of Ultrahigh Strength SiCp/Al-Zn-Mg-Cu Composites[J]. Journal of Materials Processing Technology, 2009, 209(7): 3 251-3 255.

[6]

Ji F., Ma M. Z., Song A. J., . Creep Behavior of In situ TiCP/2618 Aluminum Matrix Composite[J]. Materials Science and Engineering: A, 2009, 506(1–2): 58-62.

[7]

Das K., Narnaware L. K. A Study of Microstructure and Tribological Behaviour of Al-4.5% Cu/Al3Ti Composites[J]. Materials Characterization, 2009, 60(8): 808-811.

[8]

Ramirez A., Qian M., Davis B. Potency of High-intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys[J]. Scripta Materialia, 2008, 59(1): 19-22.

[9]

Jensen M. S., Pezzotta M., Zhang Z. L. Degradation of TiB2 Ceramics in Liquid Aluminum[J]. Journal of the European Ceramic Society, 2008, 28(16): 3 155-3 164.

[10]

Sivaprasad K., Babu S. P. K., Natarajan S. Study on Abrasive and Erosive Wear Behavior of Al 6063/TiB2 In situ Composites [J]. Materials Science and Engineering: A, 2008, 498(1–2): 495-500.

[11]

Mandal A., Chakraborty M., Murty B. S. Effect of TiB2 Particles on Sliding Wear Behavior of Al-4Cu Alloy[J]. Wear, 2007, 262(1–2): 160-166.

[12]

El-Mahallawy N., Taha M. A., Jarfors A. E. W. On the Reaction between Aluminum, K2TiF6 and KBF4[J]. Journal of Alloys and Compounds, 1999, 292(1–2): 221-229.

[13]

Auradi V., Kori S. A. Influence of Reaction Temperature for the Manufacturing of Al-3Ti and Al-3B Master Alloys[J]. Journal of Alloys and Compounds, 2008, 453(1–2): 147-156.

[14]

Wang X. M. The Formation of AlB2 in An Al-B Master Alloy [J]. Journal of Alloys and Compounds, 2005, 403(1–2): 283-287.

[15]

Zupanic F., Spaic S., Krizman A. Contribution to Ternary System Al-Ti-B[J]. Materials Science and Technology, 1998, 14(7): 601-607.

[16]

Lakshmi S., Lu L., Gupta M. In situ Preparation of TiB2 Reinforced Al Based Composites [J]. Journal of Materials Processing Technology, 1998, 73(1–3): 160-166.

[17]

Feng R., Li H. M. Phonochemistry and Its Applications[M], 1992 Hefei Anhui Science and Technology Press

[18]

Zhang S. L., Zhao Y. T., Chen X. N., . High-energy Ultrasonic Field Effects on the Microstructure and Mechanical Behaviors of A356 Alloy[J]. Journal of Alloys and Compounds, 2009, 470(1–2): 168-172.

[19]

Puskar A. The Use of High-intensity Ultrasonic[M], 1982 Amsterdam Elsevier

[20]

Oh S. Y., Cornie J. A., Russell K. C. Wetting of Ceramic Particulates with Liquid Aluminum Alloys[J]. Metallurgical Transaction, 1989, 20A(3): 527-532.

[21]

Qian Z. W. Nonlinear Acoustics[M], 1992 Beijing Science Press

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/