The micro-structural studies of Ni-BaTiO3 nanocomposite films by TEM and EELS

Shijuan Chen , Fangfang Ge , Yongjun Ma , Xuemin Wang , Liying Chen , Shangjun Han , Hong Zhang , Hongbin Wang , Yongjian Tang , Weidong Wu

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 897 -901.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 897 -901. DOI: 10.1007/s11595-011-0333-4
Article

The micro-structural studies of Ni-BaTiO3 nanocomposite films by TEM and EELS

Author information +
History +
PDF

Abstract

Epitaxial BaTiO3 films with embedded metallic Ni nanocrystal (Ni-BaTiO3) were successfully fabricated on SrTiO3 (001) single-crystalline substrate through the laser molecular beam epitaxial (L-MBE) technique. High resolution transmission electron microscopy (HRTEM) and electron energy loss spectrum (EELS) with Kramers-Kronig analysis methods were employed to characterize the microstructures, elementary distribution and the electron structure of these films. HRTEM results suggested that the structure of BaTiO3 was tetragonal with lattice parameters of a=0.399 nm and c=0.403 nm. Energy dispersive X-Ray spectroscopy (EDX) confirmed metallic Ni nanocrystal embedded successfully in BaTiO3 epitaxial films. The Ni-BaTiO3 composite films were compound of the epitaxial BaTiO3 (110) layers alternating with Ni NCs array (111) layers. Furthermore, the existence of the misfit dislocations induced by the embedding of Ni nanoparticles was also clearly demonstrated by the HRTEM images. The Ni L2,3 edges of EELS revealed that Ni NCs in their metallic state were embedded uniformly in the BaTiO3 matrix. A chemical shift of about 7 eV regarding L3 edges in the Ni EELS was also observed. The optical band gap of BaTiO3 in these films was about 3.84 eV, higher than 3.55 eV for pure BaTiO3 films at room temperature.

Keywords

Laser molecular beam epitaxial / transmission electron microscopy / electron energy loss spectrum / Kramers-Kronig analysis

Cite this article

Download citation ▾
Shijuan Chen, Fangfang Ge, Yongjun Ma, Xuemin Wang, Liying Chen, Shangjun Han, Hong Zhang, Hongbin Wang, Yongjian Tang, Weidong Wu. The micro-structural studies of Ni-BaTiO3 nanocomposite films by TEM and EELS. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 897-901 DOI:10.1007/s11595-011-0333-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cuppens R., Larsen P. K., Spierings G. A. C. M., . Ferroelectrics for Non-Volatile Memories[J]. Microelectron Eng., 1992, 19: 245-252.

[2]

Scott J. F., Araujo C. A., Meadows H. B., . Radiation Effects on Ferroelectric Thin-Film Memories: Retention Failure Mechanisms[J]. J. Appl. Phys., 1989, 66: 1 444-1 452.

[3]

Larsen P. K., Krampshoer G. L. M., Ulenaers M. J. E., . Nanosecond Switching of Thin Ferroelectric Films[J]. Appl. Phys. Lett., 1991, 59: 611-613.

[4]

Wang Y. H., Zhao N., Zhang M., . Optical Waveguide and Nonlinear Properties of Bi3NdTi3O12 Thin Films[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2010, 25(5): 743-746.

[5]

Wessels B. W. Metal-Organic Chemical Vapor Deposition of Ferroelectric Oxide Thin Films for Electronic and Optical Applications[J]. A Rev. Mater. Sci., 1995, 25: 525-546.

[6]

Zhang W. F., Huang Y. B., Zhang M. S., . Nonlinear Optical Absorption in Undoped and Cerium-Doped BaTiO3 Thin Films Using Z-Scan Technique[J]. Appl. Phys. Lett., 2000, 76(8): 1 003-1 005.

[7]

Shi W. S., Chen Z. H., Liu N. N., . Nonlinear Optical Properties of Self-Organized Complex Oxide Ce: BaTiO3 Quantum Dots Grown by Pulsed Laser Deposition[J]. Appl. Phys. Lett., 1999, 75: 1 547-1 549.

[8]

Wang W. T., Chen Z. H., Yang G., . Resonant Absorption Quenching and Enhancement of Optical Nonlinearity in Au: BaTiO3 Composite Films by Adding Fe Nanoclusters[J]. Appl. Phys. Lett., 2003, 83: 1 983-1 985.

[9]

Yang G., Guan D. Y., Wang W. T., . The Inherent Optical Nonlinearities of Thin Silver Films[J]. Opt. Mater., 2004, 25: 439-443.

[10]

Wang W. T., Yang G., Chen Z. H., . Iron Nanopariticles in Amorphous BaTiO3 Thin Films with Large Third-Order Optical Nonlinearity[J]. J. Appl. Phys., 2002, 92: 7 242-7 245.

[11]

Yang G., Wang W. T., Zhou Y. L., . Linear and Nonlinear Optical Properties of Ag Nanocluster/BaTiO3 Composite Films[J]. Appl. Phys. Lett., 2002, 81: 3 969-3 971.

[12]

Wang W. T., Yang G., Wu W. D., . Effects of the Morphology and Nanostructure on the Optical Nonlinearities of Au: BaTiO3 Nanocomposite Films[J]. J. Appl. Phys., 2003, 94: 6 837-6 840.

[13]

Yuen K. D., Law M. F., Yu K. W., . Enhancement of Optical Nonlinearity through Anisotropic Microstructures[J]. Opt. Commn., 1998, 148: 197-207.

[14]

Wen W. J., Wang N., Ma H. R., . Field Induced Structural Transition in Mesocrystallites[J]. Phys. Rev. Lett., 1999, 82: 4 248-4 251.

[15]

Wu W. D., Wang F., Ge F. F., . Optical Properities of Co-BaTiO3/MgO(100) Nano-Composite Films Grown by Pulsed Laser Deposition Method[J]. Chin Phys. Lett., 2008, 25: 1 465-1 468.

[16]

Wu W. D., He Y. J., Wang F., . Preparation and Characterization of Co-BaTiO3 Nano-Composite Films by the Pulsed Laser Deposition[J]. J. Cryst. Growth, 2006, 289: 408-413.

[17]

Ge F. F., Bai L., Wu W. D., . The Controllable Growth of Co-BaTiO3 Nanocomposite Epitaxial Film by Laser Molecular Beam Epitaxy[J]. J. Cryst. Growth, 2010, 312: 2 489-2 493.

[18]

Ge F. F., Wang X. M., Cao L. H., . Self-Organized Ni Nanocrystal Embedded in BaTiO3 Expitaxial Film[J]. Nanoscale Res. Lett., 2010, 5: 834-838.

[19]

Liao H. B., Fu J. S., Xiao R. F., . Large Third-Order Nonlinearity in Au:SiO2 Composite Films Near Percolation Threshold[J]. Appl. Phys. Lett., 1997, 70(1): 1-3.

[20]

Kelly K. L., Coronado E., Zhao L. L., . The Optical Properties of Metal Nanopartices: The Influence of Size, Shape, and Dielectric Environment[J]. J. Phys. Chem. B, 2003, 107(3): 668-677.

[21]

Egerton R. F. Electron Energy Loss Spectroscopy[M], 1996 New York Plenum Press

[22]

Lin J. F., Bird J. P., Rotkina L., . Classical and Quantum Transport in Focused-Ion-Beam-Deposited Pt Nanointerconnects [J]. Phys. Lett., 2003, 82: 802-804.

[23]

Leapman R. D., Grunes L. A., Fejes P. L. Study of the L23 Edges in the 3 d Transition-Metals and Their Oxides by Electron-Energy-Loss Spectroscopy with Comparisons to Theory[J]. Phys. Rev. B, 1982, 26(2): 614-635.

[24]

Tanawadee D., Yang G. Y., Clive A. R., . Chemical Solution-Deposited BaTiO3 Thin Films on Ni Foils: Microstructure and Interfaces[J]. J. Am. Ceram. Soc., 2008, 91(6): 1 845-1 850.

[25]

Tanc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium[J]. Phys. Status Solidi, 1996, 15: 627-637.

[26]

Ye L. X. Semiconductor Physics[M], 2007 2nd Ed. Beijing Higher Education Press

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/