Sulfonic acid modified hollow silica spheres and its application in proton exchange membranes

Min Zhu , Junjie Yuan , Guangbin Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 837 -842.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 837 -842. DOI: 10.1007/s11595-011-0321-2
Article

Sulfonic acid modified hollow silica spheres and its application in proton exchange membranes

Author information +
History +
PDF

Abstract

In order to improve the proton conductivity of hollow silica spheres (HSS)/perfluorosulfonic acid ion-exchange (PFSA) composite membranes as proton exchange membrane, sulfonic acid groups were grafted onto the surfaces of HSS via post grafting methods. TEM images and FT-IR spectra of the obtained sulfonic acid groups modified hollow silica spheres (SAMHSS) illustrated that the sulfonic acid groups were successfully grafted onto the surfaces of HSS. Water uptake and swelling degree of SAMHSS/PFSA composite membranes were found much higher than those of HSS/PFSA membranes due to the introduction of hydrophilic sulfonic acid groups. In a range from 50 °C to 130 °C, the highest conductivity of composite membranes was obtained when 5 wt% SAMHSS was loaded. The maximum conductivity reached 7.5×10−2 S·cm−1 at 100 °C and 100% relative humidity, even the temperature increased to 130 °C, the conductivity of composite membranes with 5 wt% SAMHSS could reach 3.7×10−2 S·cm−1 at 100 % relative humidity, while the conductivity of the recast PFSA was only 2.2×10−3 S·cm−1.

Keywords

composite / hollow silica spheres / proton exchange membrane / sulfonation / conductivity

Cite this article

Download citation ▾
Min Zhu, Junjie Yuan, Guangbin Zhou. Sulfonic acid modified hollow silica spheres and its application in proton exchange membranes. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 837-842 DOI:10.1007/s11595-011-0321-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gomes D., Buder I., Nunes S. P. Sulfonated Silica-based Electrolyte Nanocomposite Membranes[J]. J. Polym. Sci., Part B:Polym. Phys., 2006, 44: 2 278-2 298.

[2]

B’ebin P., Caravanier M., Galiano H. Nafion/clay-SO3H Membrane for Proton Exchange Membrane Fuel Cell Application[J]. J. Membr. Sci., 2006, 278: 35-42.

[3]

Shao Z. G., Poghee J., Hsing I. M. Preparation and Characterization of Hybrid Nafion-silica Membrane Doped with Phosphotungstic Acid for High Temperature Operation of Proton Exchange Membrane Fuel Cells[J]. J.Membr. Sci., 2004, 229(1–2): 43-51.

[4]

Liu Y. L., Hsu C. Y., Su Y. H., . Chitosan-silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles[J]. Biomacromolecules, 2005, 6: 368-373.

[5]

Kim H. J., Shul Y. G., Han H. Sulfonic-Functionalized Heteropolyacid-silica Nanoparticles for High Temperature Operation of a Direct Methanol Fuel Cell[J]. J. Power Sources, 2006, 158: 137-142.

[6]

Marschall R., Rathouský J., Wark M. Ordered Functionalized Silica Materials with High Proton Conductivity[J]. Chem. Mater., 2007, 19: 6 401-6 407.

[7]

Munakata H., Chiba H., Kanamura K. Enhancement on Proton Conductivity of Inorganic-organic Composite Electrolyte Membrane by Addition of Sulfonic Acid Group[J]. Solid State Ionics, 2005, 176: 2 445-2 450.

[8]

Maniwa Y., Kataura H., Abe M., . Ordered Water Inside Carbon Nanotubes: Formation of Pentagonal to Octagonal Icenanotubes[J]. Chem. Phys. Lett., 2005, 401: 534-538.

[9]

Yuan J. J., Zhou G. B., Pu H. T. Preparation and Properties of Nafion®/hollow Silica Spheres Composite Membranes[J]. J. Membr. Sci., 2008, 325: 742-748.

[10]

Miyake N., Wainright J. S., Savinell R. F. Evaluation of a Solgel Derived Nafion/silica, Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications II. Methanol Uptake and Methanol Permeability[J]. J. Electrochem. Soc., 2001, 148: A905-A909.

[11]

Wilhelm M., Jeske M., Marschall R., . New Proton Conducting Hybrid Membranes for HT-PEMFC Systems Based on Polysiloxanes and SO3H-functionalized Mesoporous Si-MCM-41 Particles[J]. J. Membr. Sci., 2008, 316: 164-175.

[12]

Yeo S. C., Eisenberg A. Effect of Ion Placement and Structure on Properties of Plasticized Polyelectrolytes[J]. J. Macromol. Sci. B, 1977, B13: 441-484.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/