Effect of strain on the electrical resistance of carbon nanotube/silicone rubber composites

You Zeng , Huashi Liu , Juan Chen , Heyi Ge

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 812 -816.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 812 -816. DOI: 10.1007/s11595-011-0316-z
Article

Effect of strain on the electrical resistance of carbon nanotube/silicone rubber composites

Author information +
History +
PDF

Abstract

Carbon nanotube (CNT) filled silicone rubber (SR) composites were synthesized by in situ polymerization. The effect of strain on the electrical resistance of the CNT/SR composites and the structure evolution of CNT networks during tensile deformation were investigated. The results showed that the CNT/SR composites had high sensitivity of resistance-strain response. In a wide strain range (0-125%), the change of resistivity could reach 107, which was closely associated with the evolution process of the conductive CNT-network structure. The volume expansion of the composites in the tensile process led to a gradual decrease in the volume fraction of CNTs with the strain increase. When CNT loading was lower than the percolation threshold, CNT network was in disconnected state with a rapid increase in electrical resistance of the composites. Furthermore, the CNT loading had remarkable effect on the sensitivity of resistance-strain response in the composites.

Keywords

Percolation Threshold / Silicone Rubber / Conductive Network / Dibutyltin Dilaurate / Tensile Process

Cite this article

Download citation ▾
You Zeng, Huashi Liu, Juan Chen, Heyi Ge. Effect of strain on the electrical resistance of carbon nanotube/silicone rubber composites. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 812-816 DOI:10.1007/s11595-011-0316-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ajayan P. M., Tour J. M. Materials Science-Nanotube Composites[J]. Nature, 2007, 447: 1 066-1 068.

[2]

Wang G. J., Zhao L. J., Su N. N. Preparation of a Polymer-Based Conductive Film Filled with Single-Walled Carbon Nanotubes[J]. New Carbon Mater., 2009, 24(1): 8-12.

[3]

Park M., Kim H., Youngblood J. P. Strain-Dependent Electrical Resistance of Multi-Walled Carbon Nanotube/Polymer Composite Films[J]. Nanotechnol., 2008, 19(5): 055705-1-7.

[4]

Jorio A., Dresselhaus G., Dresselhaus M. S. Carbon Nanotubes[ M], 2008 Berlin Springer

[5]

Frogley M. D., Zhao Q., Wagner H. D. Polarized Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes within a Polymer under Strain[J]. Phys. Rev. B, 2002, 65(11): 113413-1-4.

[6]

Park J. M., Kim D. S., Kim S. J., . Inherent Sensing and Interfacial Evaluation of Carbon Nanofiber and Nanotube/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique[J]. Composites Part B-Eng., 2007, 38(7–8): 847-861.

[7]

Thostenson E. T., Chou T. W. Real-Time in situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks[J]. Nanotechnol., 2008, 19(21): 215713-1-6.

[8]

Thostenson E. T., Chou T. W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing[J]. Adv. Mater., 2006, 18(21): 2 837-2 841.

[9]

Gao L. M., Thostenson E. T., Zhang Z. G., . Coupled Carbon Nanotube Network and Acoustic Emission Monitoring for Sensing of Damage Development in Composites[J]. Carbon, 2009, 47(5): 1 381-1 388.

[10]

Kang I., Joung K. Y., Choi G. R., . The Bulk Piezoresistive Characteristics of Carbon Nanotube Composites for Strain Sensing of Structures[J]. J. Nanosci. Nanotechnol., 2007, 7(11): 3 736-3 739.

[11]

Hatami K., Grady B. P., Ulmer M. C. Sensor-Enabled Geosynthetics: Use of Conducting Carbon Networks as Geosynthetic Sensors[J]. J. Geotech. Geoenviron. Eng., 2009, 135(7): 863-874.

[12]

Harris P. J. F. Carbon Nanotube Composites[J]. Int. Mater. Rev., 2004, 49(1): 31-43.

[13]

Zeng Y., Ying Z., Du J. H., . Effects of Carbon Nanotubes on Processing Stability of Polyoxymethylene in Melt-Mixing Process[J]. J. Phys. Chem. C, 2007, 111(37): 13 945-13 950.

[14]

Misra A., Tyagi P. K., Singh M. K., . FTIR Studies of Nitrogen Doped Carbon Nanotubes[J]. Diamond Relat. Mater., 2006, 15(2–3): 385-388.

[15]

Stauffer D., Aharony A. Introduction to Percolation Theory[ M], 2003 2nd ed. Philadelphia Taylor & Francis

[16]

He X. J., Du J. H., Ying Z., . Positive Temperature Coefficient Effect in Multiwalled Carbon Nanotube/High-Density Poly-ethylene Composites[J]. Appl. Phys. Lett., 2005, 86(6): 062112-1-3.

[17]

Park I., Kim K. J., Nam J., . Mechanical, Dielectric, and Magnetic Properties of the Silicone Elastomer with Multi-Walled Carbon Nanotubes as a Nanofiller[J]. Polym. Eng. Sci., 2009, 47(9): 1 396-1 405.

[18]

Fan Z. J., Wang Y., Luo G. H., . The Synergetic Effect of Carbon Nanotubes and Carbon Black in a Rubber System[J]. New Carbon Mater., 2008, 23(2): 149-153.

[19]

Ci L. J., Bai J. B. The Reinforcement Role of Carbon Nanotubes in Epoxy Composites with Different Matrix Stiffness[J]. Compos. Sci. Technol., 2006, 66(3–4): 599-603.

[20]

Tiwari M. K., Yarin A. L., Megaridis C. M. Electrospun Fibrous Nanocomposites as Permeable, Flexible Strain Sensors[J]. J. Appl. Phys., 2008, 103(4): 044305-1-10.

[21]

Pham G. T., Park Y. B., Liang Z., . Processing and Modeling of Conductive Thermoplastic/Carbon Nanotube Films for Strain Sensing[J]. Composites Part B-Eng., 2008, 39(1): 209-216.

[22]

Hu N., Karube Y., Yan C., . Tunneling Effect in a Polymer/ Carbon Nanotube Nanocomposite Strain Sensor[J]. Acta Mater., 2008, 56(13): 2 929-2 936.

[23]

Mei Q. L., Wang J. H., Wang F. L. Conductive Behaviors of Carbon Nanofibers Reinforced Epoxy Composites[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(1): 139-142.

AI Summary AI Mindmap
PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/