Structure and properties of self-assembled narural rubber/multi-walled carbon nanotube composites

Zheng Peng , Chunfang Feng , Yongyue Luo , Zhifeng Yi , Lingxue Kong

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 807 -811.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (5) : 807 -811. DOI: 10.1007/s11595-011-0315-0
Article

Structure and properties of self-assembled narural rubber/multi-walled carbon nanotube composites

Author information +
History +
PDF

Abstract

Natural rubber (NR)/multi-walled carbon nanotube (MWCNTs) composites were prepared by combining self-assembly and latex compounding techniques. The acid-treated MWCNTs (H2SO4: HNO3=3:1, volume ratio) were self-assembled with poly (diallyldimethylammonium chloride) (PDDA) through electrostatic adhesion. In the second assembling, NR/MWCNTs composites were developed by mixing MWCNTs/PDDA solution with NR latex. The results show that MWCNTs are homogenously distributed throughout the NR matrix as single tube and present a great interfacial adhesion with NR phase when MWCNTs contents are less than 3 wt%. Moreover, the addition of the MWCNTs brings about the remarkable enhancement in tensile strength and crosslink density compared with the NR host, and the data peak at 2 wt% MWCNTs loadings. When more MWCNTs are loaded, aggregations of MWCNTs are gradually generated, and the tensile strength and crosslink both decrease to a certain extent.

Keywords

natural rubber (NR) / multi-walled carbon nanotube (MWCNTs) / composites / latex compounding / self-assembly

Cite this article

Download citation ▾
Zheng Peng, Chunfang Feng, Yongyue Luo, Zhifeng Yi, Lingxue Kong. Structure and properties of self-assembled narural rubber/multi-walled carbon nanotube composites. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(5): 807-811 DOI:10.1007/s11595-011-0315-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pan L. K., Wang X. Z., Gao Y., . Electrosorption of Anions with Carbon Nanotube and Nanofibre Composite Film Electrodes[J]. Desalination, 2009, 244(1–3): 139-143.

[2]

Vast L., Carpentier L., Lallemand F., . Multiwalled Carbon Nanotubes Functionalized with 7-Octenyltrichlorosilane and N-Octyltrichlorosilane: Dispersion in Sylgard(A (R))184 Silicone and Young’s Modulus[J]. Mater. Sci., 2009, 44(13): 3 476-3 482.

[3]

Wu H. X., Rui T., Qiu X. Q. Functionalization of Multiwalled Carbon Nanotubes with Polystyrene under Atom Transfer Radical Polymerization Conditions[J]. Carbon, 2007, 5(1): 152-159.

[4]

Kitano H., Tachimoto K., Anraku Y. Functionalization of Single-walled Carbon Nanotube by the Covalent Modification with Polymer Chains[J]. Colloid Interface Sci., 2007, 306(1): 28-33.

[5]

Wang Z. M., Liu Q. C., Zhu H. Dispersing Multi-walled Carbon Nanotubes with Water-soluble Block Copolymers and Their Use as Supports for Metal Nanoparticles[J]. Carbon, 2007, 45(2): 285-292.

[6]

Zhao X. D., Lin W. R., Song N. H., . Water Soluble Multiwalled Carbon Nanotubes Prepared via Nitroxide-mediated Radical Polymerization[J]. Mater. Chem., 2006, 16(47): 4 619-4 625.

[7]

Licea-Jimenez L., Henrio P. Y., Lund A., . MWNT Reinforced Melamine-formaldehyde Containing Alphacellulose[J]. Compos. Sci. Technol., 2007, 67(5): 844-854.

[8]

Yorifuji D., Matsumura A., Aoki T., . Optical and Thermal Properties of Organo-silica/Polyimide Nano-hybrids Derived from Polysiloxazane Copolymers[J]. Photopolym. Sci. Technol., 2009, 22(4): 447-454.

[9]

Susteric Z., Kos T. Rheological Idiosyncrasies of Elastomer/ Clay Nanocomposites[J]. Applied Rheology, 2008, 18(5): 54984-1-54984-10.

[10]

Zhao Y. Y., Qiu Z. B., Yang W. T. Effect of Functionalization of Multiwalled Nanotubes on the Crystallization and Hydrolytic Degradation of Biodegradable Poly(L-lactide)[J]. Phys. Chem. B, 2008, 112(51): 16 461-16 468.

[11]

Fakhru’l-Razi A., Atieh M. A., Girun N. Effect of Multi-wall Carbon Nanotubes on the Mechanical Properties of Natural Rubber[J]. Compos. Struct., 2006, 75(1–4): 496-500.

[12]

Wang J. D., Zhu Y. F., Zhou X. W., . Preparation and Mechanical Properties of Natural Rubber Powder Modified by Carbon Nanotubes[J]. Appl. Polym. Sci., 2006, 100(6): 4 697-4 702.

[13]

Peng Z., Kong L. X., Li S. D., . Self-assembled Natural Rubber/Silica Nanocomposites: Its Preparation and Characterization[J]. Compos. Sci. Technol., 2007, 67(15–16): 3 130-3 139.

[14]

Peng Z., Kong L. X. A Thermal Degradation Mechanism of Polyvinyl Alcohol/Silica Nanocomposites[J]. Polym. Degrad. Stab., 2007, 92(6): 1 061-1 071.

[15]

Bhattacharyya S., Sinturel C., Bahloul O., . Improving Reinforcement of Natural Rubber by Networking of Activated Carbon Nanotubes[J]. Carbon, 2008, 46(7): 1 037-1 045.

[16]

Yu H. B., Mo X. Y., Peng J., . Radiation-induced Graftincy of Multi-walled Carbon Nanotubes in Glycidyl Methacrylatemaleic Acid Binary Aqueous Solution[J]. Radiat. Phys. Chem., 2008, 77(5): 656-662.

[17]

Wu C. F., Yoshio O., Norikazu N., . Dynamic Properties of An Organic Hybrid of Chlorinated Polyethylene and Hindered Phenol[J]. Appl. Polym. Sci., 2001, 82(7): 1 788-1 793.

[18]

Winters R., Heinen W., Verbruggen M., . Solid-State 13C NMR Study of Accelerated-Sulfur-Vulcanized 13C-Labeled ENB-EPDM[J]. Macromolecules, 2002, 35: 1 958-1 966.

[19]

Zhao F., Ping Z., Zhao S., . Characterization of Elastomer Networks by NMR Parameters Part II[J]. Prufen Und Messen, 2007, 12: 685-688.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/