Two-step synthesis of TiC0.7N0.3@WC-MoC2 core-shell microspheres and fabrication of TiC0.7N0.3@WC-MoC2-based cermets by SPS

Haijun Yu , Ying Liu , Yongzhong Jin , Binghong Li , Jinwen Ye , Pingping Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 710 -714.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 710 -714. DOI: 10.1007/s11595-011-0298-x
Article

Two-step synthesis of TiC0.7N0.3@WC-MoC2 core-shell microspheres and fabrication of TiC0.7N0.3@WC-MoC2-based cermets by SPS

Author information +
History +
PDF

Abstract

The precursor with TiC0.7N0.3@WO3-MO3 microspheres were prepared by a novel method from the WO3-MoO3 sol dipping. Subsequently, TiC0.7N0.3@WC-MoC2 core-shell structural microspheres were successfully obtained by carburizing the precursor at 900 °C in a flowing mixture of CH4 (20 ml · min−1) and H2 (200 ml · min−1) for 2 h. Then TiC0.7N0.3@WC-MoC2-15Co cermets were prepared utilizing the core-shell powders by spark plasma sintering (SPS). Powders of the precursors with TiC0.7N0.3@WO3-MO3 microspheres, TiC0.7N0.3@WC-MoC2 microspheres and TiC0.7N0.3@WC-MoC2-15Co cermets were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The obtained TiC0.7N0.3@WC-MoC2 microspheres have a dense WC-MoC2 coatings shell. The thickness of the shell could be easily controlled by adjusting the number of sol dipping cycles. It was found that the TiC0.7N0.3@WC-MoC2 microspheres were more beneficial to fabricate the “core-rim” structures by SPS.

Keywords

core-shell structure / spark plasma sintering (SPS) / microstructure / fabrication

Cite this article

Download citation ▾
Haijun Yu, Ying Liu, Yongzhong Jin, Binghong Li, Jinwen Ye, Pingping Li. Two-step synthesis of TiC0.7N0.3@WC-MoC2 core-shell microspheres and fabrication of TiC0.7N0.3@WC-MoC2-based cermets by SPS. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 710-714 DOI:10.1007/s11595-011-0298-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zackrisson J., Andrén H.O. Effect of Carbon Content on the Microstructure and Mechanical Properties of (Ti, W, Ta, Mo)(C, N)-(Co, Ni) Cermets[J]. International Journal of Refractory Metals & Hard Materials, 1999, 17(4): 265-273.

[2]

Mari D., Bolognini S., Feusier G., Cutard T., Viatte T., Benoit W. TiMoCN Based Cermets. Part II. Microstructure and Room Temperature Mechanical Properties[J]. International Journal of Refractory Metals & Hard Materials, 2003, 21: 47-53.

[3]

Zhang X.B., Liu N., Rong C.L., Zhou J. Microstructure and Mechanical Properties of TiC-TiN-Zr-WC-Ni-Co Cermets[J]. Ceramics International, 2009, 35: 1187-1193.

[4]

Ahn S.Y., Kang S. Effect of WC Particle Size on Microstructure and Rim Composition in the Ti(C0.7N0.3)-WC-Ni System[J]. Scripta Materialia, 2006, 55: 1015-1018.

[5]

Xiong J., Guo Z.X., Shen B.L., Cao D. The Effect of WC, Mo2C, TaC Content on the Microstructure and Properties of Ultra-fine TiC0.7N0.3 Cermets[J]. Materials and Design, 2007, 28(5): 1 689-1 694.

[6]

Wang J., Liu Y., Zhang P., Ye J.W., Tu M.J. Effect of VC and Nano-TiC Addition on the Microstructure and Properties of Micrometer Grade Ti(CN)-based Cermets[J]. International Journal of Refractory Metals & Hard Materials, 2009, 30(6): 2 222-2 226.

[7]

Mari D., Bolognini S., Viatte T., Benoit W. Study of the Mechanical Properties of TiCN-WC-Co Hardmetals by the Interpretation of Internal Friction Spectra[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19: 257-265.

[8]

Park S., Kang S. Toughened Ultra-fine (Ti, W)(CN)-Ni Cermets[J]. Scripta Materialia, 2005, 52: 129-133.

[9]

Shen X.Q., Jing M.X., Li W.X., Li D.H. Fabrication of Fe-, Ni- and FeNi-coated Al2O3 Core-shell Microspheres by Heterogeneous Precipitation[J]. Powder Technology, 2005, 160: 229-233.

[10]

Xu W.P., Xu B.S., Zhang W., Wu W.X. Erosion-corrosion Behaviors of High Velocity Arc Sprayed Fe-Al/Cr3C2 Coating[J]. Journal of Wuhan University of Technology Materials Science Edition, 2006, 21(3): 29-31.

[11]

Ghaziof S., Golozar M.A., Raeissi K. Characterization of Asdeposited and Annealed Cr-C alloy Coatings Produced from a Trivalent Chromium Bath[J]. Journal of Alloys and Compounds, 2010, 496: 164-168.

[12]

Gao L., Wang H., Kawaoka H., Sekino T., Niihara K. Fabrication of YAG-SiC Nanocomposites by Spark Plasma Sintering[J]. Journal of European Ceramic Society, 2002, 22: 785-789.

[13]

Li X., Chib A., Sato M., Takashash S. Strength and Superconductivity of Nb3Al Prepared by Spark Plasma Sintering[J]. Journal of Alloys and Compounds, 2002, 336: 232-236.

[14]

Ritasalo R., Cura M.E., Liu X.W., Soderberg O., Ritvonen T., Hannula S.P. Spark Plasma Sintering of Submcro-sized Cu-Powder-Influence of Processing Parameters and Powder Oxidization on Microstructure and Mechanical Properties[J]. Materials Science and Engineering A, 2010, 557: 2 733-2 737.

[15]

Feng P., Xiong W.H., Yu L.X., Zheng Y., Xia Y.H. Phase Evolution and Microstructure Characteristics of Ultrafine Ti(C,N)-based Cermet by Spark Plasma Sintering[J]. International Journal of Refractory Metals & Hard Material, 2004, 22: 133-138.

[16]

Alvarez M., Sánchez J.M. Spark Plasma Sintering of Ti(C,N) Cermets with Intermetallic Binder Phases[J]. International Journal of Refractory Metals & Hard Material, 2007, 25: 107-118.

[17]

Patra A., Auddy K., Ganguli D., Livage J., Biswas P.K. Sol-gel Electrochromic WO3 Coatings on Glass[J]. Materials Letters, 2004, 58: 1 059-1 063.

[18]

Yang H.M., Shi R.R., Zhang K., Hu Y.H., Tang A.D., Li X.W. Synthesis of WO3/TiO2 Nanocomposites via Sol-gel Method[J]. Journal of Alloys and Compounds, 2005, 398: 200-202.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/