Dissolution of konjac glucomannan with room temperature ionic liquids

Chunhui Shen , Denian Li , Ling Zhang , Chao Wan , Shanjun Gao

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 703 -709.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 703 -709. DOI: 10.1007/s11595-011-0297-y
Article

Dissolution of konjac glucomannan with room temperature ionic liquids

Author information +
History +
PDF

Abstract

Two kinds of new room temperature ionic liquids (RTILs), 1-allyl-3-methylimidazolium chloride (AMIMCl) and 1-butyl-3-methylimidazolium chloride (BMIMCl), were synthesized and used for the dissolution of konjac glucomannan (KGM). The experimental results showed that the solubility of KGM in AMIMCl was better than that in BMIMCl. Regenerated KGM were obtained by adding anhydrous alcohol to the KGM / ionic liquids solutions. Solubility, molecular weight, structure, and thermal property of the regenerated KGM were investigated by polarized optical microscopy (POM), viscosimetry, infrared spectroscopy (IR), X-ray diffraction technique (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). It was demonstrated that the viscosity-averaged molecular weight of the KGM samples decreased after regeneration because of the molecular degradation of KGM. Results from IR and XRD indicated that the chemical structure and the crystalline form of regenerated KGM were not changed. Results from TG and DSC showed that the thermal stability of the regenerated KGM samples only slightly decreased. These results suggest that AMIMCl and BMIMCl are direct and effective solvents for KGM.

Keywords

konjac glucomannan / room temperature ionic liquids / dissolution

Cite this article

Download citation ▾
Chunhui Shen, Denian Li, Ling Zhang, Chao Wan, Shanjun Gao. Dissolution of konjac glucomannan with room temperature ionic liquids. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 703-709 DOI:10.1007/s11595-011-0297-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao C., Liu H., Lu Y., . Characterization of Poly(vinylpyrrolidone)-Konjac Glucomannan Blend Films[J]. J. Appl. Polym. Sci., 2001, 81(5): 1 049-1 055.

[2]

Kato K., Matsuda K. Studies on the Chemical Structure of Konjac Mannan. Part I.Isolation and Characterization of Oligosaccharides from the Partial Acid Hydrolyzate of the Mannan[J]. Agric. Biol. Chem., 1969, 33(6): 1446-1453.

[3]

Katsuraya K., Okuyama K., Hatanaka K., . Constitution of Konjac Glucomannan: Chemical Analysis and 12C NMR Spectroscopy[J]. Carbohydr. Polym., 2003, 53(2): 183-189.

[4]

Dea L.C.M., Morrison A. Chemistry and Interactions of Seed Galactomannans[J]. Adv. Carbohydr. Chem. Biochem., 1975, 31: 241-312.

[5]

Maekaji K. Determination of Acidic Component of Konjac Mannan[J]. Agric. Biol. Chem., 1978, 42(1): 177-178.

[6]

Cairns P., Miles M.J., Morris V.J. X-ray Fibre Diffraction Studies on Konjac Mannan-κ-carrageenan Mixed Gels[J]. Carbohydr. Polym., 1988, 8(2): 99-104.

[7]

Toshifumi Y., Kozo O., Anatole S. Molecular and Crystal Structure of Konjac Glucomannan in the Mannan Part II: Polymophic Form[J]. Carbohydr. Res., 1992, 229(1): 41-55.

[8]

Vipul D., Mihir S., Stephen P.M., . Liquid Crystalline, Rheological and Thermal Properties of Konjac Glucomannan[J]. Polymers., 1998, 39(5): 1139-1148.

[9]

Goycoolea F.M., Richardson R.K., Morris E.R., . Effect of Locust Bean Gum and Konjac Glucomannan on the Conformation and Rheology of Agarose and κ-Carrageenan[J]. Biopolymers., 1995, 36(5): 643-658.

[10]

Xiao C.B., Gao S.J., Wang H., . Blend Films from Chitosan and Konjac Glucomannan Solutions[J]. J. Appl. Polym. Sci., 2000, 76(4): 509-515.

[11]

Gao S.J., Zhang L.N. Semi-Interpenetrating Polymer Networks from Castor Oil-Based Polyurethane and Nitrokonjac Glucomannan[J]. J. Appl. Polym. Sci., 2001, 81(9): 2076-2082.

[12]

Yang G., Xiong X.P., Zhang L.N. Microporous Formation of Blend Membranes from Cellulose/konjac Glucomannan in NaOH/thiourea Aqueous Solution[J]. J. Membr. Sci., 2002, 201(1–2): 161-173.

[13]

Nishino T., Matsuda I., Hirao K. All-cellulose Composite[J]. Macromolecules, 2004, 37(20): 7683-7687.

[14]

Fink H.P., Weigel P., Purz H.J., . Structure Formation of Regenerated Cellulose Materials from NMMO-solutions[J]. Prog Polym., 2001, 26(9): 1473-1524.

[15]

Wu J., Zhang J., Zhang H., . Homogeneous Acetylation of Cellulose in a New Ionic Liquid[J]. Biomacromolecules, 2004, 5(2): 266-268.

[16]

Torigata Inagaki H., Kitano N. Study of Konjac Mannan IV. Molecular Weight and Molecular Form of Nitrated Konjac Mannan[J]. Nippon Kagaku Zasshi., 1951, 73: 30-32.

[17]

Yu H.Q., Huang Y.H., Ying H., . Preparation and Characterization of a Quaternary Ammonium Derivative of Konjac Glucomannan[J]. Carbohydr Polym, 2007, 69(1): 29-40.

[18]

Gao S.J., Wu C.D., Nishinari K. In situ pH-decrease-induced Gelation of Sodium Alginate/carboxymethylated Konjac Glucomannan[J]. J. Appl. Polym. Sci., 2008, 108(5): 2 825-2 832.

[19]

Chen Z.G., Zong M.H., Li G.J. Lipase-catalyzed Acetylation of Konjac Glucomannan in Organic media[J]. Process Bio., 2006, 41(7): 1514-1520.

[20]

Tang R., Du Y. M., Zheng H., . Preparation and Characterization of Soy Protein Isolate-Carboxymethylated Konjac Glucomannan Blend Films[J]. J. Appl. Polym. Sci., 2003, 88(5): 1095-1099.

[21]

Welton T. Room-temperature Ionic Liquids Solvents for Synthesis and Catalysis[J]. Chem Rev., 1999, 999(8): 2 071-2 083.

[22]

Zhang H., Wu J., Zhang J., . 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose[J]. Macromolecules, 2005, 38(20): 8 272-8 277.

[23]

Swatloski R.P., Spear S.K., Holbrey J.D., . Dissolution of Cellulose with Ionic Liquids[J]. J. Am. Chem. Soc., 2002, 124(18): 4 974-4 975.

[24]

Li B., Xia J., Wang Y., . Grain-Size Effect on the Structure and Antiobesity Activity of Konjac Flour[J]. J. Agric. Food. Chem., 2005, 53(19): 7 404-7 407.

[25]

Kohyama K., Iida H., Nishinari K. A Mixed System Composed of Different Molecular Weights Konjac Glucomannan and Kappa Carrageenan: Large Deformation and Dynamic Viscoelastic Study[J]. Food. Hydroc., 1993, 7(3): 213-226.

[26]

Vuksan V., Jenkins D.J., Spadafora P. Effects of Viscous Dietary Fiber from Konjac-mannan in Subjects with the Insulin Resistance Syndrome[J]. Diabet. Care., 1999, 23(1): 9-14.

[27]

Meada M., Shimahara H., Sugiyama N. Detailed Examination of the Branched Structure of Konjac Glucomannan[J]. Agric. Biol. Chem., 1980, 44(2): 245-252.

[28]

Kato K., Matsuda Studies on the Chemical Structure of Konjac Mannan[J]. Agric. Biol. Chem., 1969, 33(33): 46

[29]

Liu Z.L., Hu H., Zhuo R.X. Konjac Glucomannan-graft-acrylic Acid Hydrogels Containing azo Crosslinker for Colon-specific Delivery[J]. J. Polym. Sci. Part A: Polym. Chem., 2004, 42(17): 4370-4378.

[30]

He C.Y., Li S.H., Liu H.W., . Extraction of Testosterone and Epitestosterone in Human Urine Using Aqueous Two-phase Systems of Ionic Liquid and Salt[J]. J. Chromatogr. A., 2005, 1082(2): 143-149.

[31]

Gutowski K.E., Broker G.A., Willauer H.D., . Controlling the Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations[J]. J. Am. Chem. Soc., 2003, 125(22): 6632-6633.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/