Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2H5OH and LPG

Hongjun Ji , Xiaoheng Liu , Xin Wang , Xujie Yang , Lude Lu , Xiutao Ge , Yonghong Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 661 -667.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 661 -667. DOI: 10.1007/s11595-011-0287-0
Article

Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2H5OH and LPG

Author information +
History +
PDF

Abstract

Using organo-tin Sn(OC4H9)4 as precursor, sodium dodecyl sulfonate (SDS) and SDS-gelatin (SDS-G) complex as template, two tin dioxide colloidal particles were prepared by a self-assembly method. Both SnO2 products were respectively labelled SnO2-B particles with SDS and SnO2-C particles with SDS-G, which are applied in fabricating SnO2 gas sensors corresponding to SnO2-B′ and SnO2-C′ sensors. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry and different thermal analysis (TG/DTA) were used for characterizations. The experimental results show that SnO2-B colloidal particles are composed of mesoporous piece-like particles, while SnO2-C particles mainly consist of spherical particles. Gas sensing measurements show that SnO2-B′ sensor performs the best sensing response to all target gases, including H2, C2H5OH and liquid petroleum gas (LPG). In particular, the sensing response of SnO2-B′ sensor is achieved at 32 in H2 atmosphere at the concentration of 1000×10−6 M. The gas sensing mechanism was purposely discussed from the electron transfer process and the microstructures of the as-prepared SnO2 products. It is found that serious agglomerations in SnO2-B′ particles facilitate the high gas sensing performance of SnO2-B′ sensor, while mesoporous structures in SnO2-C′ particles decrease the gas sensing response of SnO2-C′ sensor.

Keywords

SnO2 / gas sensors / self-assemble / SDS / gelatin

Cite this article

Download citation ▾
Hongjun Ji, Xiaoheng Liu, Xin Wang, Xujie Yang, Lude Lu, Xiutao Ge, Yonghong Li. Self-assembled SnO2 colloidal particles and their gas sensing performance to H2, C2H5OH and LPG. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 661-667 DOI:10.1007/s11595-011-0287-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen Y. B., Yamazaki T., Liu Z. F., . Porous SnO2 Sputtered Films with High H2 Sensitivity at Low Operation Temperature[J]. Thin Solid Films, 2008, 516: 5 111-5 117.

[2]

Adamyan A. Z., Adamyan Z. N., Aroutiounian V. M., . Sol-gel Derived Thin-film Semiconductor Hydrogen Gas Sensor[J]. International Journal of Hydrogen Energy, 2007, 32: 4 101-4 108.

[3]

Barsan N., Stetter J. R., Findlay M., . High-performance Gas Sensing of CO: Comparative Tests for Semiconducting (SnO2-Based) and for Amperometric Gas Sensors[J]. Anal. Chem., 1999, 71: 2 512-2 517.

[4]

Zhang Y., He X. L., Li J. P., . Fabrication and Ethanol-sensing Properties of Micro Gas Sensor based on Electrospun SnO2 Nanofibers[J]. Sensors and Actuators B, 2008, 132: 67-73.

[5]

Adamowicz B., Izydorczyk W., Izydorczyk J., . Response to Oxygen and Chemical Properties of SnO2 Thin-film Gas Sensors[J]. Vacuum, 2008, 82: 966-970.

[6]

Wang Y. L., Jiang X. C., Xia Y. N. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions[J]. J. Am. Chem. Soc., 2003, 125: 16176-16177.

[7]

Wang B., Zhu L. F., Yang Y. H., . Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen[J]. J. Phys. Chem. C, 2008, 112: 6643-6647.

[8]

Yu W. D., Li X. M., Gao X. D., . Large-Scale Synthesis and Microstructure of SnO2 Nanowires Coated with Quantumsized ZnO Nanocrystals on a Mesh Substrate[J]. J. Phys. Chem. B, 2005, 109: 17078-17081.

[9]

Duan J. H., Yang S. G., Liu H. W., . Single Crystal SnO2 Zigzag Nanobelts[J]. J. Am. Chem. Soc., 2005, 127: 6 180-6 181.

[10]

Sun S. H., Meng G. W., Zhang G. X., . Controlled Growth and Optical Properties of One-dimensional ZnO Nanostructures on SnO2 Nanobelts[J]. Crystal Growth & Design, 2007, 7: 1 988-1 991.

[11]

Sun J. Q., Wang J. S., Wu X. C., . Novel Method for High-yield Synthesis of Rutile SnO2 Nanorods by Oriented Aggregation[J]. Crystal Growth & Design, 2006, 6: 1 584-1 587.

[12]

Wang Y., Lee J. Y., Deivaraj T. C. Controlled Synthesis of V-shaped SnO2 Nanorods[J]. J. Phys. Chem. B, 2004, 108: 13 589-13 593.

[13]

Wang G. X., Park J. S., Park M. S., . Synthesis and High Gas Sensitivity of Tin Oxide Nanotubes[J]. Sensors and Actuators B, 2008, 131: 313-317.

[14]

Hu J. Q., Ma X. L., Shang N. G., . Large-scale Rapid Oxidation Synthesis of SnO2 Nanoribbons[J]. J. Phys. Chem. B, 2002, 106: 3823-3826.

[15]

Vaezi M. R. SnO2/ZnO Double-layer Thin Films: A Novel Economical Preparation and Investigation of Sensitivity and Stability of Double-layer Gas sensors[J]. Materials Chemistry and Physics, 2008, 110: 89-94.

[16]

Wang J. X., Sun X. W., Xie S. S., . Preferential Growth of SnO2 Triangular Nanoparticles on ZnO Nanobelts[J]. J. Phys. Chem. C, 2007, 111: 7671-7675.

[17]

Kovalenko V. V., Zhukova A. A., Rumyantseva M. N., . Surface Chemistry of Nanocrystalline SnO2: Effect of Thermal Treatment and Additives[J]. Sensors and Actuators B, 2007, 126: 52-55.

[18]

Vaishampayan M. V., Deshmukh R. G., Mulla I. S. Influence of Pd Doping on Morphology and LPG Response of SnO2[J]. Sensors and Actuators B, 2008, 131: 665-672.

[19]

Huo Q. S., Margolese D. I., Ciesla U., . Organization of Organic Molecules with Inorganic Molecular Species Into Nanocomposite Biphase Arrays[J]. Chem. Mater., 1994, 6: 1 176-1 191.

[20]

Galo J. A. A. S., Clément S., Bénédicte L., . Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chem. Rev., 2002, 102: 4 093-4 138.

[21]

Liu X. H., Kan C., Wang X., . Self-assembled Nanodisks with Targetlike Multirings Aggregated at The Air-water Interface[J]. J. Am. Chem. Soc., 2006, 128: 430-431.

[22]

Ji H. J., Liu X. H., Wang X., . Effect of Proteins on The Selfassembly of Multiring Structural ZrO2 Nanodisks[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 346: 1-4.

[23]

Ji H. J., Liu X. H., Wang X., . Dimeric Sodium Naphthalene-1-sulfonate Aggregates Guided Self-assembly of TiO2/naphthylene Hybrid Nanocomposite Film[J]. Journal of Molecular Structure, 2009, 935: 8-12.

[24]

Kan C., Liu X. H., Wang X., . Effects of Different Anionic Surfactant Templates (H+A, Na+A) on Titanium Selfassembly: In The Air-water Interfacial Flms[J]. Colloids Surfaces A: Physicochem. Eng. Aspects, 2007, 311: 93-98.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/