Microstructure evolution of AZ31 Mg alloy during change channel angular extrusion

Yu Liu , Tianmo Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 654 -657.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 654 -657. DOI: 10.1007/s11595-011-0285-2
Article

Microstructure evolution of AZ31 Mg alloy during change channel angular extrusion

Author information +
History +
PDF

Abstract

Microstructure evolution of AZ31 Mg alloy during change-channel angular extrusion (CCAE) was investigated. The grains of AZ31 Mg alloy were refined significantly from 500 μm to 15 μm after CCAE deformed at 523 K. Dislocations were induced at the initial stage of extrusion and they rearranged themselves to form dislocation boundaries and sub-grain boundaries during deformation. When the specimen through the horizontal change channel with the strain increased, the sub-boundaries evolved to high angle grain boundaries (HAGB). The process of grain refinement can be described as continuous dynamic recovery and recrystallization (CDRR).

Keywords

AZ31 Mg alloy / grain refinement / change channel angular extrusion (CCAE) / continuous dynamic recovery and recrystallization (CDRR)

Cite this article

Download citation ▾
Yu Liu, Tianmo Liu. Microstructure evolution of AZ31 Mg alloy during change channel angular extrusion. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 654-657 DOI:10.1007/s11595-011-0285-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marya M., Hector L. G., Verma R., . Microstructural Effects of AZ31 Magnesium Alloy on Its Tensile Deformation and Failure Behaviors[J]. Mat. Sci. Eng. A, 2006, 418: 341-356.

[2]

Agnew S. R., Mehrotra P., Lillo T. M., . Crystallographic Texture Evolution of Three Wrought Magnesium Alloys During Equal Channel Angular Extrusion[J]. Mat. Sci. Eng. A, 2005, 408: 72-77.

[3]

Kim W. J., Sa Y. K. Micro-extrusion of ECAP Processed Magnesium Alloy for Pprodu-production of High Strength Magnesium Micro-gears[J]. Scripta Materialia, 2006, 54: 1 391-1 395.

[4]

Miyahara Y., Horita Z., Langdon T. G. Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP[J]. Materials Science & Engineering A, 2006, 420: 240-244.

[5]

Swiostek J., Göken J., Letzig D., . Hydrostatic Extrusion of Commercial Magnesium Alloys at 100 °C and Its Influence on Grain Refinement and Mechanical Properties[J]. Materials Science and Engineering A, 2006, 424: 223-229.

[6]

Agnewa S. R., Mehrotra P., Lillo T. M., . Texture Evolution of Five Wrought Magnesium Alloys During Route A Equal Channel Angular Extrusion: Experiments and Simulations[J]. Acta Materialia, 2005, 53: 3 135-3 146.

[7]

Hidetoshi S., Toshiji Mukai. Fracture Toughness in Mg-Al-Zn Alloy Processed by Equal-channel-angular Extrusion[J]. Scripta Materialia, 2006, 54: 633-638.

[8]

Jin L., Lin D., Mao D., . Mechanical Properties and Microstructure of AZ31 Mg Alloy Processed by Two-step Equal Channel Angular Extrusion[J]. Materials Letters, 2005, 59: 2 267-2 270.

[9]

Jin L., Lin D., Mao D., . Microstructure Evolution of AZ31 Mg Alloy During Equal Channel Angular Extrusion[J]. Materials Science and Engineering A, 2006, 423: 247-252.

[10]

Huarte B., Luis C. J., Puertas I., . Optical and Mechanical Properties of an Al-Mg Alloy Processed by ECAE[J]. Journal of Materials Processing Technology, 2005, 162: 317-326.

[11]

Gourdet S., Montheillet F. A Model of Continuous Dynamic Recrystallization[J]. Acta Materialia, 2003, 51: 2 685-2 699.

[12]

Zeng Z., Jonsson S., Roven H. J., . Modeling the Flow Stress for Single Peak Dynamic Recrystallization[J]. Materials and Design, 2009, 30: 1 939-1 943.

[13]

Myshlyaev M. M., McQueen H. J., Mwembela A. Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy[J]. Materials Science and Engineering A, 2002, 337: 121-133.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/