Electrochemical properties of Nano-LiFePO4 prepared by hydrothermal reaction

Xuefei Wang , Tao Li , Jing Wu , Bohua Deng , Lianmeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 624 -627.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 624 -627. DOI: 10.1007/s11595-011-0280-7
Article

Electrochemical properties of Nano-LiFePO4 prepared by hydrothermal reaction

Author information +
History +
PDF

Abstract

LiFePO4 nanorods were facilely synthesized under hydrothermal condition. The crystalline structure and particle morphology of LiFePO4 powders were characterized by X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The electrochemical properties of LiFePO4/Li cells were investigated by galvanostatic test and cyclic voltammetry (CV). The XRD result demonstrated LiFePO4 powder had an orthorhombic structure with a space group of Pnma. The synthesized LiFePO4 nanorods exhibited a first discharge capacity of 155 mAh·g−1 (91% of theorectical capacity) close to the theorectical capacity of LiFePO4 (170 mAh · g−1) at 0.1 C.

Keywords

LiFePO4 / nanorod / hydrothermal / cathode material

Cite this article

Download citation ▾
Xuefei Wang, Tao Li, Jing Wu, Bohua Deng, Lianmeng Zhang. Electrochemical properties of Nano-LiFePO4 prepared by hydrothermal reaction. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 624-627 DOI:10.1007/s11595-011-0280-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Padhi A., Nanjundaswamy K., Goodenough J. Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of the Electrochemical Society, 1997, 144: 1 188

[2]

Doeff M. M., Hu Y. Q., McLarnon F., . Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4[J]. Electrochemical and Solid State Letters, 2003, 6: A207-A209.

[3]

Wagemaker M., Ellis B. L., Lützenkirchen-Hecht D., . Proof of Supervalent Doping in Olivine LiFePO4[J]. Chemistry of Materials, 2008, 20: 6 313-6 15.

[4]

Fedorková A., Nacher-Alejos A., Gómez-Romero P., . Structural and Electrochemical Studies of PPy/PEG-LiFePO4 Cathode Material for Li-ion Batteries[J]. Electrochimica Acta, 2010, 55: 943-947.

[5]

Ge Y., Yan X., Liu J., . An Optimized Ni Doped LiFePO4/C Nanocomposite with Excellent Rate Performance[J]. Electrochimica Acta, 2010, 55: 5 886-5 890.

[6]

Bruce P. G., Scrosati B., Tarascon J. M. Nanomaterials for Rechargeable Lithium Batteries[J]. Angewandte Chemie-International Edition, 2008, 47: 2 930-2 946.

[7]

Park K. S., Kang K. T., Lee S. B., . Synthesis of LiFePO4 With Fine Particle by Co-precipitation Method[J]. Materials Research Bulletin, 2004, 39: 1 803-1 810.

[8]

Li X. L., Wang W. D., Shi C. W., . Structural and Electrochemical Characterization of LiFePO4/C Prepared by a Sol-gel Route with Long- and Short-chain Carbon Sources[J]. Journal of Solid State Electrochemistry, 2009, 13: 921-926.

[9]

Hsu K. F., Tsay S. Y., Hwang B. J. Synthesis and Characterization of Nano-sized LiFePO4 Cathode Materials Prepared by a Citric Acid-based Sol-gel Route[J]. Journal of Materials Chemistry, 2004, 14: 2 690-2 695.

[10]

Yang S. F., Zavalij P. Y., Whittingham M. S. Hydrothermal synthesis of Lithium Iron Phosphate Cathodes[J]. Electrochemistry Communications, 2001, 3: 505-508.

[11]

Ni J. F., Morishita M., Kawabe Y., . Hydrothermal Preparation of LiFePO4 Nanocrystals Mediated by Organic Acid[J]. Journal of Power Sources, 2010, 195: 2 877-2 882.

[12]

Rangappa D., Ichihara M., Kudo T., . Surface Modified LiFePO4/C Nanocrystals Synthesis by Organic Molecules Assisted Supercritical Water Process[J]. Journal of Power Sources, 2009, 194: 1 036-1 042.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/