Preparation and characterization of ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO)

Jianqi Ma

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 611 -614.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (4) : 611 -614. DOI: 10.1007/s11595-011-0277-2
Article

Preparation and characterization of ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO)

Author information +
History +
PDF

Abstract

Monodisperse ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO) were prepared in non-aqueous solvent using in-situ synthesis method. Transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectrometer(XPS), Fourier transformation infrared spectroscopy (FTIR), and thermogravimetric analysis(TGA) were adopted to characterize and investigate the size, structure, composition, and the binding manners between organic capping agent TOPO and inorganic ZrO2 nanocores of the as-prepared nanoparticles. In addition, the nanoparticles were also studied to determine their solubility and relative stability. The experimental results show that the prepared nanoparticles contain about 25% organic capping shell TOPO, 75% inorganic ZrO2 nanocores, and can be easily dissolved and be stably disersed in nonpolar organic solvents.

Keywords

ZrO2 nanoparticles / trioctylphosphine oxide (TOPO) / monodisperse / solubility

Cite this article

Download citation ▾
Jianqi Ma. Preparation and characterization of ZrO2 nanoparticles capped by trioctylphosphine oxide (TOPO). Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(4): 611-614 DOI:10.1007/s11595-011-0277-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jie F., Shannon W.B., Galen D.S. Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol-gel Process [J]. Chem. Mater., 2006, 18: 6 391-6 396.

[2]

Adri C. T., Boris V. M., Seung S. J., . ReaxFF Reactive Force Field for sSolid Oxide Fuel Cell Systems with Application to Oxygen ion Transport in Yttria-stabilized Zirconia [J]. J. Phys. Chem. A, 2008, 112: 3 133-3 140.

[3]

Satyajit S., Sudipta S. Thermodynamic Tetragonal Phase Stability in Sol-gel Derived Nanodomains of Pure Zirconia [J]. J. Phys. Chem. B, 2004, 108: 3 395-3 399.

[4]

Zho Z. F., Wang S. M. Influence of Synthesis Conditions on the Preparation of Nanosized ZrO2 Powders by Evaporative Decomposition of Solutions [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(3): 309-311.

[5]

Zhang C. M., Li C. X., Yang J., . Tunable Luminescence in Monodisperse Zirconia Spheres [J]. Langmuir, 2009, 25: 7 078-7 083.

[6]

Choudharyv R. G., Deshmukh M., Pataskar S. G. Low-Temperature Complete Combustion of a Dilute mixture of Methane and Propane over Transition-Metal-Doped ZrO2 Catalysts: Effect of the Presence of Propane on Methane Combustion [J]. Environ. Sci. Technol., 2005, 39: 2 364-2 368.

[7]

Shukla S., Seal S., Vanfleet R. Sol-gel Synthesis and Phase Evolution Behavior of Sterically Stabilized Nanocrystalline Zirconia [J]. J. Sol-Gel Sci. Technol., 2003, 27: 119-136.

[8]

Liu H. W., Feng L. B., Zhang X. S., . ESR Characterization of ZrO2 nanopowder [J]. J. Phys. Chem., 1995, 99: 332-334.

[9]

Beena T., Kalpesh S., Basha S., . Synthesis of Nanocrystalline Zirconia Using Sol-gel and Precipitation Techniques[J]. Ind. Eng. Chem. Res., 2006, 45: 8 643-8 650.

[10]

Lin C. K., Zhang C. M., Lin J. Phase Transformation and Photoluminescence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-type Sol-gel Process [J]. J. Phys. Chem. C, 2007, 111: 3 300-3 307.

[11]

Mikihisa M., Yuichi S., Sungkil L. Hitoshi Katakura. High-Yield Sol-Gel Synthesis of Well-Dispersed, Colorless ZrO2 Nanocrystals [J]. Langmuir, 2006, 22: 7 137-7 140.

[12]

Liang J. H., Deng Z. X., Jiang X., . Photoluminescence of Tetragonal ZrO2 Nanoparticles Synthesized by Microwave Irradiation [J]. Inorg. Chem., 2002, 41: 3602-3604.

[13]

Zhao N. N., Pan D. C., Nie W., . Two-phase Synthesis of Shape-controlled Colloidal Zirconia Nanocrystals and Their Tharacterization [J]. J. Am. Chem. Soc., 2006, 128: 10118-10124.

[14]

Hughes A. E., Sexton B. A. Comments on the Use of Implanted Ar as a Binding Energy Reference [J]. J. Electron Spectrosc. Relat. Phemon., 1990, 50(2): C15-C18.

[15]

Brenier R., Mugnier J., Mirica E. XPS Study of Amorphpus Zirconium Oxide Films Prepared by Sol-gel [J]. Appl. Surf. Sci., 1999, 143: 85-89.

[16]

Pelavin M., Hendrickson D.N., Hollander J. M., . Phosphorus 2p Electron Binding Energies: Correlation with Extended Hueckel Charges [J]. J. Phys. Chem., 1970, 74(5): 1 116-1 121.

[17]

Lorenz J. K., Ellis A. B. Surfactant-semiconductor Interfaces: Perturbation of the Photoluminescence of Bulk Cadmium Selenide by Adsorption of Tri-n-octylphosphine Oxide as a Probe of Solution Aggregation with Relevance to Nanocrystal Stabilization [J]. J. Am. Chem. Soc., 1998, 120: 10 970-10 975.

[18]

Chen S., Yin Y., Wang D., . Structures, Growth Modes, and Spectroscopic Properties of Small Zirconia Clusters [J]. J. Cryst. Growth, 2005, 282(3–4): 498-505.

[19]

Quan Z. W., Wang L. S., Lin J. S. ynthesis and Characterization of Spherical ZrO2:Eu3+ Phosphors by Spray Pyrolysis Process [J]. Mater. Res. Bull., 2005, 40(5): 810-820.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/