Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin

Qisheng Wu , Shuiping Li

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 514 -518.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 514 -518. DOI: 10.1007/s11595-011-0259-4
Article

Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin

Author information +
History +
PDF

Abstract

Mesoporous materials with the highest surface area were synthesized by hydrothermal treatment from coal-measure kaolin using cetyltrimethylammonium bromide (CTAB) as template. The effect of several factors on surface area of products also had been discussed. The products were characterized by FTIR, HRTEM and N2 adsorption and desorption isotherm plot methods. There was typical structure as Si-O, Si-OH and Si-O-Si of mesoporous materials in the framework of synthesized materials; the pore size distributions of the products showed a sharp peak at 3.82 nm. The effect of hydrothermal treatment time and the amount of template on the specific surface area of mesoporous materials was important, when the Surf/Si = 0.135, and hydrothermal time = 12 h, and the surface area of the product reached up to 1 070 m2/g, which was higher than other products.

Keywords

coal-measure kaolin / mesoporous materials / hydrothermal synthesis

Cite this article

Download citation ▾
Qisheng Wu, Shuiping Li. Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(3): 514-518 DOI:10.1007/s11595-011-0259-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu X. W., Li J. W., Zhou L., . Adsorption of CO2, CH4 and N2 on Ordered Mesoporous Silica Molecular Sieve [J]. Chem. Phys. Lett., 2005, 415: 198-201.

[2]

Prinson P. S., Shylesh S., Singh A. P. Catalytic Properties of Tincontaining Mesoporous Molecular Sieves in the Selective Reduction of Carbonyl Compounds (Meerwein-Ponndorf-Verley (MPV) Reaction) [J]. J. Mol. Catal. A: Chem., 2007, 266: 11-20.

[3]

Shrikant S. B., Singh A. P. Characterization and Catalytic Activity of Cobalt Containing MCM-41 Prepared by Direct Hydrothermal, Grafting and Immobilization Methods [J]. J. Mol. Catal. A: Chem., 2007, 266: 118-130.

[4]

Ganapati V. S., Trissa J., Halligudi S. B. Copper (II) Ion Exchanged AlSBA-15: A Versatile Catalyst for Intermolecular Hydroamination of Terminal Alkynes with Aromatic Amines [J]. J. Catal., 2007, 250: 274-282.

[5]

Chen D. H., Hu B., Huang C. Z. Chitosan Modified Ordered Mesoporous Silica as Micro-column Packing Materials for on-line Flow Injection-inductively Coupled Plasma Optical Emission Spectrometry Determination of Trace Heavy Metals in Environmental Water Samples [J]. Talanta, 2009, 78(2): 491-497.

[6]

Xu Y., Cui Y. X., Jiang D., . Dye-templating Nonsurfactant Synthesis of Mesoporous Silica [J]. Microporous Mesoporous Mater., 2008, 109: 335-341.

[7]

Ying F., Li J. H., Huang C. J., . Direct Synthesis and Superior Catalytic Performance of V-containing SBA-15 Mesoporous Materials for Oxidative Dehydrogenation of Propane [J]. Catal. Lett., 2007, 115: 137-142.

[8]

Bhagat S. D., Kim Y. H., Gyeongbeom Y., . Mesoporous SiO2 Powders with High Specific Surface Area by Microwave Drying of Hydrogels: A Facile Synthesis [J]. Microporous Mesoporous Mater., 2008, 108: 333-339.

[9]

Madhusoodana C. D., Kameshima Y., Nakajima A., . Synthesis of High Surface Area Al-containing Mesoporous Silica from Calcined and Acid Leached Kaolinites as the Precursors [J]. J. Colloid. Interface Sci., 2006, 297: 724-731.

[10]

Chandrasekar G., Ahn W. S. Synthesis of Cubic Mesoporous Silica and Carbon Using Fly Ash [J]. J. Non-Cryst. Solids, 2008, 354: 4 027-4 030.

[11]

Wu X. W., Ma H. W., Li J. H., . The Synthesis of Mesoporous Aluminosilicate Using Microcline for Adsorption of Mercury(II) [J]. J. Colloid. Interface Sci., 2007, 315: 555-561.

[12]

Xia M. S., Jiang Y. S., Li F. F., . Preparation and Characterization of Bimodal Mesoporous Montmorillonite by Using Single Template [J]. Colloids Surf., A, 2009, 338: 1-6.

[13]

Mahir A., Çiğdem H., Zürriye Y., . The Effect of Alkali Concentration and Solid/liquid Ratio on the Hydrothermal Synthesis of Zeolite NaA from Natural Kaolinite [J]. Microporous Mesoporous Mater., 2005, 86: 176-184.

[14]

Shams K., Mirmohammadi S. J. Preparation of 5A Zeolite Monolith Granular Extrudates Using Kaolin: Investigation of the Effect of Binder on Sieving/adsorption Properties Using a Mixture of Linear and Branched Paraffin Hydrocarbons [J]. Microporous Mesoporous Mater., 2007, 106: 268-277.

[15]

Don T. N., Thang V. D., Pham T. H., . Y Zeolite From Kaolin Taken in Yen Bai-Vietnam: Synthesis, Characterization and Catalytic Activity for the Cracking of N-heptane [J]. Stud. Surf. Sci. Catal., 2006, 159: 197-200.

[16]

Roghayeh K. M., Fakhry S. A. A Study on the Thermal Behavior of Low Silica X-type Zeolite Ion-exchanged with Alkaline Earth Cations [J]. Microporous Mesoporous Mater., 2009, 120: 285-293.

[17]

Wang P., Shen B. J., Shen D. D., . Synthesis of ZSM-5 Zeolite from Expanded Perlite/kaolin and Its Catalytic Performance for FCC Naphtha Aromatization [J]. Catal. Comm., 2007, 8: 1 452-1 456.

[18]

Ríos C. A., Williams C. D., Fullen M. A. Nucleation and Growth History of Zeolite LTA Synthesized from Kaolinite by Two Different Methods [J]. Appl. Clay Sci., 2009, 42: 446-454.

[19]

Lin D. C., Xu X. W., Zuo F., . Crystallization of JBW, CAN, SOD and ABW Type Zeolite from Transformation of Metakaolin [J]. Microporous Mesoporous Mater., 2004, 70: 63-70.

[20]

Kakali G., Perraki T., Tsivilis S., . Thermal Treatment of Kaolin: The Effect of Mineralogy on the Pozzolanic Activity [J]. Appl. Clay Sci., 2001, 20(1–2): 73-80.

[21]

Cheng X. H., Jin C., Liu X. H. Study of Surface Modification for Coal Kaolin Powder by Infrared Spectrum Analysis [J]. Chin. J. Spectro. Lab., 2005, 22: 1 230-1 233.

[22]

Ben Y. H., Li H., Guan Y., . Research on Structure and Adsorption Performance of Modified Kaolin Materials with Large Surface Area [J]. Non-Metal. Mines., 2006, 29(2): 15-23.

[23]

Okada K., Shimai A., Takei T., . Preparation of Microporous Silica from Metakaolinite by Selective Leaching Method [J]. Microporous Mesoporous Mater., 1998, 21(4–6): 289-296.

[24]

Chen C. Y., Li H. X., Davis M. E. Study on Mesoporous Materials. I.Synthesis and Characterization of MCM-41 [J]. Microporous Mater., 1993, 2: 17-26.

[25]

Rojas F., Kornhauser I., Felipe C., . Capillary Condensation in Heterogeneous Mesoporous Network Consisting of Variable Connectivity and Pore-size Correlation [J]. Phys. Chem. Chem. Phys., 2002, 4: 2 346-2 355.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/