Microstructures in centrifugal casting of SiCp/AlSi9Mg composites with different mould rotation speeds

Kai Wang , Wenju Sun , Bo Li , Hansong Xue , Changming Liu

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 504 -509.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 504 -509. DOI: 10.1007/s11595-011-0257-6
Article

Microstructures in centrifugal casting of SiCp/AlSi9Mg composites with different mould rotation speeds

Author information +
History +
PDF

Abstract

Two ingots were produced by centrifugal casting at mould rotational speeds of 600 rpm and 800 rpm using 20 vol% SiCp/AlSi9Mg composite melt, respectively. The microstructure along the radial direction of cross-sectional sample of ingots was presented. SiC particles migrated towards the external circumference of the tube, and the distribution of SiC particles became uniform under centrifugal force. Voids in 20 vol% SiCp/AlSi9Mg composite melt migrated towards the inner circumference of the tube. The quantitative analysis results indicated that not only SiC particles but also primary α phases segregated greatly in centrifugal casting resulting from the transportation behavior of constitutions with different densities in the SiCp/AlSi9Mg composite melt. In addition, the eutectic Si was broken owing to the motion of SiCp/AlSi9Mg composite melt during centrifugal casting.

Keywords

SiCp/Al composites / centrifugal casting / mould rotational speed / microstructures

Cite this article

Download citation ▾
Kai Wang, Wenju Sun, Bo Li, Hansong Xue, Changming Liu. Microstructures in centrifugal casting of SiCp/AlSi9Mg composites with different mould rotation speeds. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(3): 504-509 DOI:10.1007/s11595-011-0257-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fard R. R., Akhlaghi F. Effect of Extrusion Temperature on the Microstructure and Porosity of A356-SiCp Composites[J]. J. Mater. Process. Technol., 2007, 187–188(12): 433-436.

[2]

Shen X., Ren S., He X., . Study on Methods to Strengthen SiC Preforms for SiCp/Al Composites by Pressureless Infiltration[J]. J. Alloys Compd., 2009, 468(1–2): 158-163.

[3]

Melgarejo Z. H., Suárez O. M., Sridharan K. Microstructure and Properties of Functionally Graded Al-Mg-B Composites Fabricated by Centrifugal Casting[J]. Composites Part A, 2008, 39(7): 1 150-1 158.

[4]

Chou S.-N., Huang J.-L., Lii D.-F., . The Mechanical Properties and Microstructure of Al2O3/aluminum Alloy Composites Fabricated by Squeeze Casting[J]. J. Alloys Compd., 2007, 436(1–2): 124-130.

[5]

Zhang X. N., Geng L., Wang G. S. Fabrication of Al-based Hybrid Composites Reinforced with SiC Whiskers and SiC Nanoparticles by Squeeze Casting[J]. J. Mater. Process. Technol., 2006, 176(1–3): 146-151.

[6]

Cöcen Önel K. The Production of AlSi Alloy-SiCp Composites via Compocasting: Some Microstructural Aspects[J]. Mater. Sci. Eng. A, 1996, 221(1–2): 187-191.

[7]

Akhlaghi F., Lajevardi A., Maghanaki H. M. Effects of Casting Temperature on the Microstructure and Wear Resistance of Compocast A356/SiCp Composites: A Comparison between SS and SL Routes[J]. J. Mater. Process. Technol., 2004, 155–156: 1 874-1 880.

[8]

Naher S., Brabazon D., Looney L. Computational and Experimental Analysis of Particulate Distribution during Al-SiC MMC Fabrication[J]. Composites Part A, 2007, 38(3): 719-729.

[9]

Zhang W., Shi H., Fu H. Distribution of SiCp in Al and Al-Cu Alloy Centrifugally Cast with Electromagnetic Stirring[J]. J. Sci. Technol., 2004, 20(4): 448-450.

[10]

Duque N. B., Melgarejo Z. H., Suárez O. M. Functionally Graded Aluminum Matrix Composites Produced by Centrifugal Casting[J]. Mater. Charact., 2005, 55(2): 167-171.

[11]

Gao J. W., Wang C. Y. Modeling the Solidification of Functionally Graded Materials by Centrifugal Casting[J]. Mater. Sci. Eng. A, 2000, 292(2): 207-215.

[12]

Watanabe Y., Kawamoto A., Matsuda K. Particle Size Distributions in Functionally Graded Materials Fabricated by the Centrifugal Solid-particle Method[J]. Compos. Sci. Technol., 2002, 62(6): 881-888.

[13]

Rodriguez-Castro R., Kelestemur M. H. Processing and Microstructural Characterization of Functionally Gradient Al A359/SiCp Composite[J]. J. Mater. Sci., 2002, 37(9): 1 813-1 821.

[14]

Velhinho A., Sequeira P. D., Martins R., . X-ray Tomographic Imaging of Al/SiCp Functionally Graded Composites Fabricated by Centrifugal Casting[J]. Nucl. Phys. B., 2003, 200: 295-302.

[15]

Balout B., Masounave J., Songmene V. Modeling of Eutectic Macrosegregation in Centrifugal Casting of Thin Walled ZA8 Zinc Alloy[J]. J. Mater. Process. Technol., 2009, 209(18–19): 5 955-5 963.

[16]

Ren S., He X., Qu X., . Effect of Si Addition to Al-8Mg Alloy on the Microstructure and Thermo-physical Properties of SiCp/Al Composites Prepared by Pressureless Infiltration[J]. Mater. Sci. Eng. B, 2007, 138(3): 263-270.

[17]

Samuel A. M., Gotmare A., Samuel F. H. Effect of Solidification Rate and Metal Feedability on Porosity and SiC/Al2O3 Particle Distribution in an Al-Si-Mg (359) Alloy[J]. Composites Science and Technology, 1995, 53(3): 301-315.

[18]

Ogawa T., Watanabe Y., Sato H., . Theoretical Study on Fabrication of Functionally Graded Material with Density Gradient by a Centrifugal Solid-particle Method[J]. Composites Part A, 2006, 37(12): 2 194-2 200.

[19]

Gautham B. P., Kapur P. C. Rheological Model for Short Duration Response of Semi-solid Metals[J]. Mater. Sci. Eng. A, 2005, 393: 223-228.

[20]

Brinkman H. C. The Viscosity of Concentrated Suspensions and Solutions[J]. J. Chem. Phys., 1952, 20(4): 571-572.

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/