Properties of biogenic magnetite nanoparticles in the radula of chiton Acanthochiton rubrolineatus lischke

Chuanlin Liu , Yunan Han , Chenghua Guo , Chengsheng Liu , Xiguang Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 478 -482.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (3) : 478 -482. DOI: 10.1007/s11595-011-0252-y
Article

Properties of biogenic magnetite nanoparticles in the radula of chiton Acanthochiton rubrolineatus lischke

Author information +
History +
PDF

Abstract

The properties of biogenic magnetite (Fe3O4) nanoparticles in chiton acanthochiton rubrolineatus lischke were characterized by selected electron diffractometry, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Mössbauer spectroscopy and magnetization measurements. Results showed that the magnetite nanoparticles presented crystalline appearance, exhibiting strong absorptions at 595, 1 463, 3 467 cm−1 and weak adsorptions at 1 697, 1 113, 1 048, 848, 445 cm−1 in FT-IR, two partially overlapping sextets in Mössbauer spectrum, and the area ratio of the sextets was 1.08. Also, the particles exhibited ferromagnetic behavior, and had 82 A·m2/kg saturation magnetization, 1.4×104 A/m coercive force and 4.0 A·m2/kg remnant magnetization, respectively. The investigation indicates that the biogenic magnetite nanoparticles mineralized in the chiton are impure in composition and non-stoichiometric.

Keywords

biogenic magnetite nanoparticle / HRTEM / FT-IR / mössbauer spectroscopy / SQUID

Cite this article

Download citation ▾
Chuanlin Liu, Yunan Han, Chenghua Guo, Chengsheng Liu, Xiguang Chen. Properties of biogenic magnetite nanoparticles in the radula of chiton Acanthochiton rubrolineatus lischke. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(3): 478-482 DOI:10.1007/s11595-011-0252-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrecht M., Janke V., Sievers S., . Scanning Force Microscopy Study of Biogenic Nanoparticles for Medical Applications[J]. J. Magn. Magn. Mater., 2005, 290–291: 269-271.

[2]

Moghimi S. M., Hunter H. A. C., Murray J. C. Long-Circulating and Target Specific Nanoparticles: Theory to Practice[J]. Pharm. Rev., 2001, 53(2): 283-318.

[3]

Kung H., Foeke T. Mechanical Behavior of Nanostructured Materials[J]. MRS Bull., 1999, 24(2): 14-19.

[4]

Tartaj P., Morales M. P., Verdaguer S. V., . The Preparation of Magnetic Nanoparticles for Applications in Biomedicine[J]. J. Phys. D: Appl. Phys., 2003, 36(13): 182-197.

[5]

Hang Q. D., Chen S. X., Winoto S. H., . Design of High-Speed Magnetic Fluid Bearing Spindle Motor[J]. IEEE Trans. Magn., 2001, 37(4): 2 647-2 650.

[6]

Service R. F. Nanocrystals May Give Boost to Data Storage[J]. Science, 2000, 287(5460): 1 902-1 903.

[7]

Berry C. C., Curtis A. S. G. Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine[J]. J. Phys. D: Appl. Phys., 2003, 36(13): 198-206.

[8]

Gupta A. K., Gupta M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications[J]. Biomaterials, 2005, 26(18): 3 995-4 021.

[9]

Dobson J. Magnetic Nanoparticles for Drug Delivery[J]. Drug Dev. Res., 2006, 67(1): 55-60.

[10]

McBain S. C., Yiu H. H. P., Dobson J. Magnetic Nanoparticles for Gene and Drug Delivery[J]. Int. J. Nanomed., 2008, 3(2): 169-180.

[11]

Rye P. D. Sweet and Sticky: Carbohydrate-Coated Magnetic Beads[J]. BioTechnology, 1996, 14(2): 155-157.

[12]

Park S. I., Kim J. H., Kim C. G., . Size-Controlled Magnetic Nanoparticles with Lecithin for Biomedical Applications[J]. J. Magn. Magn. Mater., 2007, 312(2): 386-389.

[13]

Polyak B., Friedman G. Magnetic Targeting for Site-Specific Drug Delivery: Applications and Clinical Potential[J]. Expert Opin. Drug Deliv., 2009, 6(1): 53-70.

[14]

Frankel R. B., Blakemore R. P., Wolfe R. S. Magnetite in Freshwater Magnetotactic Bacteria [J]. Science, 1979, 203(4387): 1 355-1 356.

[15]

Lowenstam H. A. Lepidocrocite, an Apatite Mineral, and Magnetite in Teeth of Chitons(Polyplacophora)[J]. Science, 1967, 156(3780): 1 373-1 375.

[16]

Hsu C. Y., Li C. W. Magnetoreception in Honeybees[J]. Science, 1994, 265(5168): 95-97.

[17]

Maher B. A. Magnetite Biomineralization in Termites[J]. Proc. R. Soc. Lond. B, 1998, 265(1397): 733-737.

[18]

Mann S., Sparks N. H. C. Ultrastructure, Morphology and Organization of Biogenic Magnetite from Sockeye Salmon Oncorhynchus Nerk: Implications for Magnetoreception[J]. J. Exp. Biol., 1988, 140(1): 35-49.

[19]

Hanzlik M., Heunemann C., Rötzler E. H., . Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons[J]. BioMetals, 2000, 13(4): 325-331.

[20]

Kirschvink J. L., Kirschvink A. K., Woodford B. J. Magnetite Biomineralization in the Human Brain [J]. Proc. Natl. Acad. Sci. USA, 1992, 89(16): 7 683-7 687.

[21]

Steneck R. S., Watling L. Feeding Capabilities and Limitation of Herbivorous Molluscs: a Functional Group Approach[J]. Mar. Biol., 1982, 68(3): 299-319.

[22]

Mizota M., Maeda Y. Magnetite in the Radular Teeth of Chitons[J]. Hyperfine Interact, 1986, 29(1–4): 1 423-1 426.

[23]

C W Li, T S Chin, J S Li, et al. Growth of Chiton Teeth Evidenced from Magnetic Measurement and Microstructure Characterization[J]. IEEE Trans. Magn., 989, 5(5): 3 818–3 821

[24]

Pierre T. G. S., Evans L. A., Webb J. Non-Stoichiometric Magnetite and Maghemite in the Mature Teeth of the Chiton Acanthopleura Hirtosa[J]. Hyperfine Interact., 1992, 71(1–4): 1 275-1 278.

[25]

Farina M., Schemme A., Weissmuller G., . Atomic Force Microscopy Study of Tooth Surfaces[J]. J. Struct. Biol., 1999, 125(1): 39-49.

[26]

Liu C. L., Cheng X. J., Zhao J. G., . Biogenic Nanoparticles and Mineral Composition in the Radula of Chiton Acanthochiton Rubrolineatus[J]. Front. Mater. Sci. Chin., 2009, 3(3): 248-254.

[27]

Qian X., Zhao J. G., Liu C. L. Study of Nano-Magnetic Materials in the Major Lateral Radula Teeth of Chiton Acanthochiton Rubrolineatus Lischke by Scanning Electron Microscope[J]. Acta Physica Sinica, 2002, 51(6): 1 393-1 395.

[28]

Qian X., Zhao J. G., Liu C. L. Magnetic Anisotropy of the Radula of Chiton Acanthochiton Rubrolinestus LISCHKE[J]. Bioelectromagnetics, 2002, 23(6): 480-484.

[29]

Walker M. M., Perry A., Dizon A. E., . Detection, Extraction, and Characterization of Biogenic Magnetite[C]. Magnetite Biomineralization and Magnetoreception in Living Organisms: A New Biomagnetism, 1985 NewYork Plenum Press 155-165.

[30]

Walker A. L. The Effects of Magnetite on Oxalate-and Dithionite-Extractable Iron[J]. Soil. Sci. Soc. Am. J., 1983, 47(5): 1 022-1 026.

[31]

Hunt C. P., Singer M. J., Kletetschka G., . Effect of Citrate-Bicarbonate-Dithionite Treatment on Fine-Grained Magnetite and Maghemite[J]. Earth Planet. Sci. Lett, 1995, 130(1–4): 87-94.

[32]

Yamaura M., Camilo R. L., Sampaio L. C., . Preparation and Characterization of (3-Aminopropyl) Triethoxysilane-Coated Magnetite Nanoparticles[J]. J. Magn. Magn. Mater., 2004, 279(2–3): 210-217.

[33]

Okoshi K., Ishii T. Concentrations of Elements in the Radular Teeth of Limpets, Chitons and Other Marine Mollusks[J]. J. M. Biotech., 1996, 3(4): 252-257.

[34]

Saunders M., Kong C., Shaw J. A., . Characterization of Biominerals in the Radula Teeth of the Chiton, Acanthopleura Hirtosa[J]. J. Struct. Biol., 2009, 167(1): 55-61.

[35]

Macey D. J., Brooker L. R., Webb J., . Structure Organization of the Cusps of the Radular Teeth of the Chiton Plaxiphora Albida[J]. Acta Zoologica, 1996, 77(4): 287-294.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/