Facile synthesis of SnO2 hollow microspheres and their optical property

Tiekun Jia , Xiaofeng Wang , Weimin Wang , Yanling Dong , Guihua Liao , Yujiang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 301 -304.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 301 -304. DOI: 10.1007/s11595-011-0218-0
Article

Facile synthesis of SnO2 hollow microspheres and their optical property

Author information +
History +
PDF

Abstract

SnO2 hollow microspheres were fabricated via a hydrothermal synthesis method assisting by the complex surfactant system of polyacrylamide and polyethylene glycol. Observation by field emission scanning electron microscopy (FESEM) showed the SnO2 hollow spheres were composed of nanoparticles. The growth mechanism for the formation of hollow spheres was proposed. UV spectroscopy and photoluminescence (PL) were used to investigate the optical properties of the products. The PL result showed that four peaks, containing the emission from recombination of free excitons, were observed in the photoluminescence spectrum.

Keywords

SnO2 / hollow spheres / optical property

Cite this article

Download citation ▾
Tiekun Jia, Xiaofeng Wang, Weimin Wang, Yanling Dong, Guihua Liao, Yujiang Wang. Facile synthesis of SnO2 hollow microspheres and their optical property. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 301-304 DOI:10.1007/s11595-011-0218-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271: 933-937.

[2]

Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H. One-dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Adv. Mater., 2003, 15: 353-389.

[3]

Jarzebski Z. M., Marton J. P. Physical Properties of SnO2 Materials[J]. J. Electrochem. Soc., 1976, 123: 199-203.

[4]

Dai Z. R., Gole J. L., Stout J. D., Wang Z. L. Tin Oxide Nanowires, Nanoribbons, and Nanotubes[J]. J. Phys. Chem. B, 2002, 106: 1274-1279.

[5]

Shi L., Hao Q., Yu C., Mingo N., Kong X., Wang Z. L. Thermal Conductivities of Individual Tin Dioxide Nanobelts[J]. Appl. Phys. Lett., 2004, 84: 2638-2640.

[6]

Hu J. Q., Bando Y., Liu Q. L., GolbergLaser D. Ablation Growth and Optical Properties of Wide and Long Single Crystal SnO2 Ribbons[J]. Adv. Func. Mater., 2003, 13: 493-496.

[7]

Zhu H., Yang D., Yu G., Zhang H., Yao K. A Simple Hydrothermal Route for Synthesizing SnO2 Quantum Dots[J]. Nanotechnology, 2006, 17: 2386-2389.

[8]

Jiang L., Sun G., Zhou Z., Sun S., Wang Q., Yan S., Li H., Tian J., Guo J., Zhou B., Xin Q. Size-Controllable Synthesis of Monodispersed SnO2 Nanoparticles and Application in Electrocatalysts[J]. J. Phys. Chem. B, 2005, 109: 8774-8778.

[9]

Zhang D., Qi L., Ma J., Cheng H. Synthesis of Submicrometer-sized Hollow Silver Spheres in Mixed Polymer-surfactant Solutions[J]. Adv. Mater., 2002, 14: 1499-1502.

[10]

Bausch A. R., Nikolaides M. G., Marquez M., Weitz D. A. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles[J]. Science, 2002, 298: 1006-1009.

[11]

Yang H. G., Zeng H. C. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening[J]. J. Phys. Chem. B, 2004, 108: 3492-3495.

[12]

Han S., Jang B., Kim T., Oh S. M., Hyeon T. Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anode[J]. Adv. Funct. Mater., 2005, 15: 1845-1850.

[13]

Liu S., Xie M., Li Y., Guo X., Ji W., Ding W. Synthesis and Selective Gas-sensing Properties of Hierarchically Porous Intestine-like SnO2 Hollow Nanostructures[J]. Mater. Chem. Phys., 2010, 123: 109-113.

[14]

Jia T. K., Wang W. M., Long F., Fu Z. Y., Wang H., Zhang Q. J. Synthesis, Characterization and Photocatalytic Activity of Zn-doped SnO2 Hierarchical Architectures Assembly with Nanocones[J]. J. Phys. Chem. C, 2009, 113: 9071-9077.

[15]

Kiely C. J., Fink J., Brust M. Spontaneous Ordering of Bimodal Ensembles of Nanoscopic Gold Clusters[J]. Nature, 1998, 396: 444-446.

[16]

Shevchenko E. V., Talapin D. V., Kotov N. A. Structural Diversity in Binary Nanoparticle Superlattices[J]. Nature, 2006, 439: 55-59.

[17]

Han L., Luo J., Kariuki N. N., . Novel Interparticle Spatial Properties of Hydrogen-bonding Mediated Nanoparticle Assembly[J]. J. Chem. Mater., 2003, 15: 29-37.

[18]

Butler M. A. Hotoelectrolysis and Physical Properties of the Semiconducting Electrode WO3[J]. J. Appl. Phys., 1977, 48: 1914-1920.

[19]

Calestani D., Zha M., Zappettini A., Lazzarini L., Salviati G., Zanotti L., Sberveglieri G. Structural and Optical Study of SnO2 Nanobelts and Nanowires[J]. Mater. Sci. Eng. C, 2005, 25: 625-630.

[20]

Das S., Kar S., Chaudhuric S. Optical Properties of SnO2 Nanoparticles and Nanorods Synthesized by Solvothermal Process[J]. J. Appl. Phys., 2006, 99: 114303-114303-7.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/