Synthesis of novel SnO2 quantum cubes and their selfassembly

Zhongping Yu , Bo Ye , Bo Liu , Xianping Fan , Guodong Qian , Zhiyu Wang , Hua Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 269 -272.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 269 -272. DOI: 10.1007/s11595-011-0211-7
Article

Synthesis of novel SnO2 quantum cubes and their selfassembly

Author information +
History +
PDF

Abstract

Nano-structured cubic SnO2 crystalines were successfully synthesized through solvothermal route. The obtained products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The study showed that, the SnO2 particles were rutile structured and almost uniformly cube shaped crystals in quantum size (3–8 nm). Self-assembly behavior of the cubic SnO2 quantum dots was also observed. The synthesis process can be defined as an nonhydrolysis (NH) hydroxylation reaction provided by the amide elimination of carboxylated precursors. The formation of cubic morphology of SnO2 can be ascribed to the mild reaction featured by high nucleation rate and low growth rate, surface energy difference of the crystallographic facets of SnO2 and the passivation effect of the starting material-dodecylamine which drastically reduced the dipole interation. The selfassembly of the cubic SnO2 quantum dots was driven by van der Waals force and capillary force.

Keywords

nanocube / quantum dot / crystal growth / tin oxide

Cite this article

Download citation ▾
Zhongping Yu, Bo Ye, Bo Liu, Xianping Fan, Guodong Qian, Zhiyu Wang, Hua Wang. Synthesis of novel SnO2 quantum cubes and their selfassembly. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 269-272 DOI:10.1007/s11595-011-0211-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Batzill M., Diebold U. The Surface and Materials Science of Tin Oxide[J]. Prog. Surf. Sci., 2005, 79(2–4): 47-154.

[2]

Kuang Q., Lao C., Wang Z. L., Xie Z. X., Zheng L. S. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire[J]. J. Am. Chem. Soc., 2007, 129(19): 6070-6071.

[3]

Hoa N. D., Quy N. V., Song H., Kang Y., Cho Y., Kim D. Tin Oxide Nanotube Structures Synthesized on a Template of Single-Walled Carbon Nanotubes[J]. J. Crys. Grow., 2009, 311(3): 657-661.

[4]

Deng Z. T., Peng B., Chen D., Tang F. Q., Muscat A. J. A New Route to Self-Assembled Tin Dioxide Nanospheres: Fabrication and Chacterization[J]. Langmuir, 2008, 24(19): 11089-11095.

[5]

Zhao Q. R., Zhang Z. G., Dong T., Xie Y. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures[J]. J. Phys. Chem. B, 2006, 110(31): 15152-15156.

[6]

Lou X. W., Yuan C. L., Archer L.A. Double-Walled SnO2 Nano-Cocoons with Movable Magnetic Cores[J]. Adv. Mater., 2007, 19(20): 3 328-3 332.

[7]

Slater B., Catlow C. R. A., Gay D. H., Williams D. E., Dusastre V. J. Study of Surface Segregation of Antimony on SnO2 Surpfaces by Computer Simulation Techniques[J]. Phys. Chem. B, 1999, 103(48): 10644

[8]

Oviedo J., Gillan M. J. Energetics and Structure of Stoichiometric SnO2 Surfaces Studied by First-Principles Calculations[J]. Surf. Sci., 2000, 463(2): 93-101.

[9]

Leite E. R., Giraldi T. R., Pontes F. M., Longo E., Beltran A., Andres J. Crystal Growth in Colloidal Tin Oxide Nanocrystals Induced by Coalescence at Room Temperature[J]. Appl. Phys. Lett., 2003, 83(8): 1566-1568.

[10]

Cheng B., Russell J. M., Shi W. S., Zhang L., Samulski E. T. Large-Scale, Solution-Phase Growth of Single-Crystalline SnO2 Nanorods[J]. J. Am. Chem. Soc., 2004, 126(19): 5 972-5 976.

[11]

Xu X. X., Zhuang J., Wang X. SnO2 Quantum Dots and Quantum Wires: Controllable Synthesis, Self-Assembled 2D Architectures, and Gas-sensing Properties[J]. J. Am. Chem. Soc., 2008, 130(37): 12527-12535.

[12]

Zhu H., Yang D., Yu G., Zhang H., Yao K. A Simple Hydrothermal Route for Synthesizing SnO2 Quantum Dots[J]. Nanotechnology, 2006, 17(9): 2 386-2 389.

[13]

Li B., Xie Y., Huang J., Qian Y. Solvothermal Route to Tin Monoselenide Bulk Single Crystal with Different Morphologies[ J]. Inorg. Chem., 2000, 39(10): 2 061-2 064.

[14]

Hao E., Lian T. Q. Layer-by-layer Assembly of CdSe Nanoparticles based on Hydrogen Bonding[J]. Langmuir, 2000, 16(21): 7 879-7 881.

[15]

Lu C. H., Wu N. Z., Jiao X.M., Luo C. Q., Cao W. X. Micropatterns Constructed from Au Nanoparticles[J]. Chem. Commun., 2003, 3(9): 1 056-1 057.

[16]

Binder W. H. Supramolekulare Anordung von Nanopartikeln an Flussig-Flussig-Grenzflachen[J]. Angew. Chem., 2005, 117(33): 5 300-5 304.

[17]

Zhang H., Wang C. L., Li M. J., Ji X. L., Zhang J. H., Yang B. Fluorescent Nanocrystal-Polymer Composites from Aqueous Nanocrystals: Method without Ligand Exchange[J]. Chem. Mater., 2005, 17(19): 4 783-4 788.

[18]

Dubertret B., Skourides P., Norris D. J., Noireaux V., Brivanlou A. H., Libchaber A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles[J]. Science, 2002, 298: 1759-1762.

[19]

Mulder W. J. M., Koole R., Brandwijk R. J., Storm G., Chin P. T. K., Strijkers G. J., Donega C. d. M., Nicolay K., Griffioen A.W. Quantum Dots with a Paramagnetic Coating as a Bimodal Molecular Imaging Probe[J]. Nano Lett., 2006, 6(1): 1-6.

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/