The properties of native silk fibroin (SF) solution/gel from bombyx mori silkworms during the full fifth instar larval stage

Hong Wang , Ningtao Mao , Xuechao Hu , Huili Shao , Xiangyu Jin

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 262 -268.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 262 -268. DOI: 10.1007/s11595-011-0210-8
Article

The properties of native silk fibroin (SF) solution/gel from bombyx mori silkworms during the full fifth instar larval stage

Author information +
History +
PDF

Abstract

The properties of native silk fibroin (SF) solution in the gland of silkworms during the full fifth instar larval stage were examined in an attempt to elucidate the mechanism of natural silk spinning in the silkworm. The flow and gelation behavior, birefringence phenomenon, rheological properties, specific viscosity and conformation of SF solutions from the gland of silkworms were measured by polarized light microscope, HAKKE rheometer, Ubbelohde viscometer and Solid-state 13C NMR, respectively. After comparing their properties with regenerated SF solutions from natural silk fibers, it is believed that there exists a progressive maturation process favorable to spin silk fibers with excellent properties from native SF solution and a weak bonded and highly oriented SF gel network with SF molecules partly extended in α-helix conformation is formed in the middle section of the gland of silkworms. This suggests that a biomimetic maturation process for making spinnable solution might be necessary for artificial silk fiber spinning in order to obtain improved fiber properties.

Keywords

silk fibre / spin / viscosity / sol/gel

Cite this article

Download citation ▾
Hong Wang, Ningtao Mao, Xuechao Hu, Huili Shao, Xiangyu Jin. The properties of native silk fibroin (SF) solution/gel from bombyx mori silkworms during the full fifth instar larval stage. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 262-268 DOI:10.1007/s11595-011-0210-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altman G. H., Diaz F., Jakuba C., . Silk-based Biomaterials [J]. Biomaterials, 2003, 24: 401-416.

[2]

Sofia S., McCarthy M. B., Gronowicz G., . Functionalized silk-based Biomaterials for bone Formation[J]. Journal of Biomedical Materials Research, 2001, 54: 139-148.

[3]

Lv Q., Hu K., Feng Q., . Preparation and Characterization of PLA/fibroin Composite and Culture of HepG2 (Human Hepatocellular Liver Carcinoma Cell line) Cells[J]. Composites Science and Technology, 2007, 67(14): 3023-3030.

[4]

She Z., Zhang B., Jin C., . Preparation and in vitro Degradation of Porous Three-dimensional Silk Fibroin/chitosan Scaffold[J]. Polymer Degradation and Stability, 2008, 93(7): 1316-1322.

[5]

Acharya C., Sudip K., Kundu S. C. Silk Fibroin Film from Non-mulberry Tropical Tasar Silkworms: A Novel Substrate for in vitro Fibroblast Culture[J]. Acta Biomaterialia, 2009, 5(1): 429-437.

[6]

Sofia S., McCarthy M. B., Gronowicz G., . Functionalized Silk-based Biomaterials for Bone Formation[J]. J. Biomed. Mat. Res., 2001, 54(1): 139-148.

[7]

Yang M., Kawamura J., Zhu Z., . Development of Silk-like Materials Based on Bombyx Mori and Nephila Clavipes Sragline Silk Fibroins[J]. Polymer, 2009, 50: 117-124.

[8]

Viney C. C. Natural Silks: Archetypal Supramolecular Assembly of Polymer Fibres[J]. Supramolecular Science, 1997, 4(1–2): 75-81.

[9]

Iizuka E. Silk: an Overview[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1985, 41: 163-171.

[10]

Gatesy J., Hayashi C., Motriuk D., . Extreme Diversity Conservation and Convergence of Spider Silk Fibroin Sequences[ J]. Science, 2002, 291(5513): 2603-2614.

[11]

Hayashi C. H., Lewis R. V. Molecular Architechture and Evolution of a Modular Spider Silk Protein Gene[J]. Science, 2002, 287(5457): 1456-1477.

[12]

Seidel A. A., Liivak O., Calve S. S., . Regeneratd Spider Silk: Processing, Properties and Structure[J]. Macromolecules, 2000, 33: 775-780.

[13]

Shao Z., Vollrath F., Yang Y., . Structure and Behavior of Regenerated Spider Silk[J]. Macromolecules, 2002, 36: 1157-1161.

[14]

Um I. C., Kweon H. Y., Parkdson Y. H. Structure Characteristics and Properties of the Regenerated Silk Fibroin Prepared from Formic Acid[J]. International Journal of Biological Macromolecules, 2001, 29: 91-97.

[15]

Xie F., Zhang H., Shao H. L., . Effect of Shearing on Formation of Silk Fibers from Regenerated Bombyx mori silk Fibroin Aqueous Solution[J]. International Journal of Biological Macromolecules, 2006, 38: 284-288.

[16]

Chen X., Knight D. P., Shao Z. Regenerated Bombyx Silk Solutions Studied with Rheometry and FTIR[J]. Polymer, 2001, 42: 9969-9974.

[17]

Holland C., Terry A. E., Porter D., . Natural and Unnatural silks [J]. Polymer Communication, 2007, 48: 3388-3392.

[18]

Zhou L., Chen X., Shao Z., . Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm Bombyx mor[J]. Phys. Chem. B, 2005, 109: 16937-1645.

[19]

Terry A. E., Knight D. P., Porter D., . PH Induced Change in the Rheology of Silk Fibroin Solution from the Middle Division of Bombyx mori Silkworm[J]. Biomacromolecules, 2004, 5: 768-772.

[20]

Moriya M., Ohgo K., Masubuchi Y., . Flow Analysis of Aqueous Solution of Silk Fibroin in the Spinneret of Bombyx mori Silkworm by Combination of Viscosity Measurement and Finite Element Method Calculation[J]. Polymer, 2008, 49: 952-956.

[21]

Moriya M., Ohgo K., Masubuchi Y., . Micro-computerized Tomographic Observation of the Spinning Apparatus in Bombyx mori Silkworms[J]. Polymer, 2008, 49(26): 5665-5669.

[22]

Shao Z., Vollrath F. Surprising Strength of Silkworm Silk[J]. Nature, 2002, 418: 741

[23]

Md M. R. K., Hideaki M., Yasuo G., . Structural Characteristics and Properties of Bombyx mori Silk Fiber Obtained by Different Artificial Forcibly Silking Speeds[J]. International Journal of Biological Macromolecules, 2008, 42: 264-270.

[24]

Kaplan D. L., Adams W. W., Viney C. C., . Silk Polymer: Materials Science and Biotechnology[M], 1994 Washington ACS Books 156-178.

[25]

Wang H., Zhang Y. P., Shao H. L., . A Study on the Flow Stability of Regenerated Silk Fibroin Aqueous Solution[J]. International Journal of Biological Macromolecules, 2005, 36: 66-70.

[26]

Li G., Yu T. Investigation of the Liquid-crystal State in Silk Fibroin[J]. Makromol. Chem., Rapid Commun., 1989, 10: 387-389.

[27]

Kerkam K., Viney C., Kaplan D., . Liquid Crystallinity of Natural silk Secretions[J]. Nature, 1991, 349: 596-598.

[28]

Zainuddin L. T. T., Park Y., . The Behavior of Aged Regenerated Bombyx mori Silk Fibroin Solutions Studied by 1H NMR and Rheology[J]. Biomaterials, 2008, 29: 4268-4274.

[29]

Holland C., Terry A. E., Porter D., . Comparing the Rheology of Native Spider and Silkwormspinning Dope[J]. Nature Materials, 2006, 5: 870-874.

[30]

Elias H. G. Macromolecules 1-Structure and Properties [M], 1977 New York Plenum Press 78-96.

[31]

Fang Y., Al-Assaf S., Phillips G. O., . Binding Behavior of Calcium to Polyuronates: Comparison of Pectin with Alginate[J]. Carbohydrate Polymers, 2008, 72: 334-341.

[32]

Bit G., Debnath B., Saha S. K. Dilute Solution Behaviour of Progressively Hydrolyzed Polyacrylamide in Water-N, N Dimethylformamide Mixtures[J]. European Polymer Journal, 2006, 42(3): 544-552.

[33]

Hossain S. K., Ochi A., Ooyama E., . Dynamic Light Scattering of Native Silk Fibroin Solution Extracted from Different Parts of the Middle Division of the Silk Gland of the Bombyx Mori Silkworm[J]. Biomacromolecules, 2003, 4(2): 350-359.

[34]

Perepelkin K. E. Physicochemical Principles of Spinning of Natural Fibroin Fibres and Ways of Utilizing Them in Developing Chemical Fibre Technology. Part 1. Principles of Formation of Fibres and Fibre Materials in Nature. Spinning of Natural Fibroin Fibres[J]. Fibre Chemistry, 2007, 39(4): 308-317.

[35]

Bowlin G L, Wnek G. In Encyclopedia of Biomaterials and Biomedical Engineering[M]. Informa Healthcare, 2007: 1365

[36]

Ruan Q., Zhou P. Sodium Ion Effect on Silk fibroin Conformation Characterized by Solid-state NMR and Generalized 2D NMR-NMR Correlation[J]. Journal of Molecular Structure, 2008, 883–884: 85-90.

[37]

Asakura T., Iwadate M., Demura M. M., . Structural Analysis of Silk with 13C NMR Chemical Shift Contour plots[J]. International Journal of Biological Macromolecules, 1999, 24: 167-171.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/