Comparison of stress distribution of platform-switched and non-platform switched abutment for implant supported single crown

Haibin Xia , Zhiyong Li , Jinxin Guo , Tao Tian , Zaibo Yang , Chuncheng Ge

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 246 -249.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 246 -249. DOI: 10.1007/s11595-011-0206-4
Article

Comparison of stress distribution of platform-switched and non-platform switched abutment for implant supported single crown

Author information +
History +
PDF

Abstract

The influence of platform-switched abutment on stress distribution within the surrounding bone, fixture, abutment, and screw under various loading conditions were studied. Two 3-D finite element models representative of an implant-supported metal crown for the mandibular first molar and its surrounding bone were computed. Model A simulated the implant with non-platform-switched abutment and model B was for platform-switched abutment. A load of 100 N was applied vertically and obliquely at the center fossa, the tip of the buccal cusp and the distal fossa, respectively. The results show that the distribution of Von Mises stress in the two models is similar. When platform-switched abutment is used, the maximum Von Mises stress within the surrounding bone is lower; however, this value is higher within the fixture and screw.

Keywords

dental implant / platform-switched abutment / stress / finite element analysis

Cite this article

Download citation ▾
Haibin Xia, Zhiyong Li, Jinxin Guo, Tao Tian, Zaibo Yang, Chuncheng Ge. Comparison of stress distribution of platform-switched and non-platform switched abutment for implant supported single crown. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 246-249 DOI:10.1007/s11595-011-0206-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lazzara R.J., Porter S.S. Platform Switching: a New Concept in Implant Dentistry for Controlling Postrestorative Crestal Bone Levels[J]. Int. J. Periodontics. Restorative Dent., 2006, 26(1): 9-17.

[2]

Gardner D.M. Platform Switching as a Means to Achieving Implant Esthetics[J]. N Y State Dent. J., 2005, 71(3): 34-37.

[3]

Cappiello M., Luongo R., Di Iorio D., . Evaluation of Peri-implant Bone Loss Around Platform-switched Implants[ J]. Int. J. Periodontics Restorative Dent., 2008, 28(4): 347-355.

[4]

Canullo L., Rasperini G. Preservation of Peri-implant Soft and Hard Tissues Using Platform Switching of Implants Placed in Immediate Extraction Sockets: a Proof-of-concept Study With 12- to 36-month Follow-up[J]. Int. J. Oral. Maxillofac Implants., 2007, 22(6): 995-1000.

[5]

Hürzeler M., Fickl S., Zuhr O., . Peri-implant Bone Level Around Implants With Platform-switched Abutments: Preliminary Data From a Prospective Study[J]. J. Oral Maxillofac. Surg., 2007, 65: 33-39.

[6]

Vela-Nebot X., Rodríguez-Ciurana X., Rodado-Alonso C., . Benefits of an Implant Platform Modification Technique to Reduce Crestal Bone Resorption[J]. Implant Dent., 2006, 15(3): 313-320.

[7]

Maeda Y., Miura J., Taki I., . Biomechanical Analysis on Platform Switching: is there Any Biomechanical Rationale[ J]. Clin. Oral. Implants Res., 2007, 18(5): 581-584.

[8]

Schrotenboer J., Tsao Y.P., Kinariwala V., . Effect of Microthreads and Platform Switching on Crestal Bone Stress Levels: A Finite Element Analysis[J]. J. Neriodontol., 2008, 79(11): 2166-2172.

[9]

Kim Y.S., Kim C.W., Jang K.S., . Application of Finite Element Analysis to Evaluate Platform Switching[J]. J. Korean. Acad. Prosthodont., 2005, 43(6): 727-735.

[10]

Geramy A., Morgano S.M. Finite Element Analysis of Three Designs of an Implant-supported Molar Crown[J]. J. Prosthet. Dent., 2004, 92(5): 434-440.

[11]

Eskitascioglu G., Usumez A., Sevimay M., . The Influence of Occlusal Loading Location on Stresses Transferred to Implant-supported Prostheses and Supporting Bone: A Three-dimensional Finite Element Study[J]. J. Prosthet. Dent., 2004, 91(2): 144-150.

[12]

Richter E.J., Orschall B., Jovanovic S.A. Dental Implant Abutment Resembling the Two-phase Tooth Mobility[J]. J. Biomech., 1990, 23: 297-306.

[13]

O’Brien W.J. Dental Materials and Their Selection, 2002 2nd ed[M] Chicago Quintessence 347

[14]

Yang H.S., Lang L.A., Molina A., Felton D.A. The Effects of Dowel Design and Load Direction on Dowel-and-core Restorations[ J]. J. Prosthet. Dent., 2001, 85: 558-567.

[15]

Sevimay M., Turhan F., Kiliçarslan M.A., Eskitascioglu G. Three-dimensional Finite Element Analysis of the Effect of Different Bone Quality on Stress Distribution in an Implant-supported Crown[J]. J. Prosthet. Dent., 2005, 93(3): 227-234.

[16]

Van Staden R.C., Guan H., Loo Y.C. Application of the Finite Element Method in Dental Implant Research[J]. Comput. Methods Biomech. Biomed. Engin., 2006, 9(4): 257-270.

[17]

Chun H.J., Shin H.S., Han C.H., Lee S.H. Influence of Implant Abutment Type on Stress Distribution in Bone Under Various Loading Conditions Using Finite Element Analysis[J]. Int. J. Oral. Maxillofac. Implants, 2006, 21(2): 195-202.

[18]

Hansson S. A Conical Implant-abutment Interface at the Level of the Marginal Bone Improves the Distribution of Stresses in the Supporting Bone. an Axisymmetric Finite Element Analysis[J]. Clin. Oral. Implants Res., 2003, 14(3): 286-293.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/