Antibacterial activity of silicate bioceramics

Sheng Hu , Congqin Ning , Yue Zhou , Lei Chen , Kaili Lin , Jiang Chang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 226 -230.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 226 -230. DOI: 10.1007/s11595-011-0202-8
Article

Antibacterial activity of silicate bioceramics

Author information +
History +
PDF

Abstract

Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration measurement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.

Keywords

silicate ceramics / antibacterial activity / specific surface area / aqueous pH / ionic concentration

Cite this article

Download citation ▾
Sheng Hu, Congqin Ning, Yue Zhou, Lei Chen, Kaili Lin, Jiang Chang. Antibacterial activity of silicate bioceramics. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 226-230 DOI:10.1007/s11595-011-0202-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hench L.L. The Story of Bioglass [J]. J. Mater. Sci. Mater. Med., 2006, 17: 967-978.

[2]

Lin K.L., Zhai W.Y., Ni S.Y., Chang J., Zeng Y., Qian W.J. Study of the Mechanical Property and in Vitro Biocompatibility of CaSiO3 Ceramics[J]. Ceramics International, 2005, 31: 323-326.

[3]

Zhao W., Wang J., Zhai W., Wang Z., Chang J. The Self-setting Properties and in Vitro Bioactivity of Tricalcium Silicate[J]. Biomaterials, 2005, 26: 6113-6121.

[4]

Huan Z., Chang J. Self-setting Properties and in Vitro Bioactivity of Calcium Sulfate Hemihydrate-tricalcium Silicate Composite bone Cements[J]. Acta Biomater., 2007, 3: 952-960.

[5]

Wu C., Ramaswamy Y., Soeparto A., Zreiqat H. Incorporation of Titanium Into Calcium Silicate Improved Their Chemical Stability and Biological Properties[J]. J. Biomed. Mater. Res. A, 2007, 86: 402-410.

[6]

Oliveira A.L., Reis R.L. Pre-mineralisation of Starch /polycrapolactone Bone tissue Engineering Scaffolds by a Calcium-silicate-based process[J]. J. Mater. Sci. Mater. Med., 2004, 15: 533-540.

[7]

Xu S., Lin K., Wang Z., Chang J., Wang L., Lu J., Ning C. Reconstruction of Calvarial Defect of Rabbits Using Porous Calcium Silicate Bioactive Ceramics[J]. Biomaterial, 2008, 29: 2588-2596.

[8]

Huan Z., Chang J. Study on Physicochemical Properties and in Vitro Bioactivity of Tricalcium Silicate-calcium Carbonate Composite Bone Cement[J]. J. Mater. Sci. Mater. Med., 2008, 19: 2913-2918.

[9]

Jain S.K., Agrawal G.P., Jain N.K. A Novel Calcium Silicate Based Microspheres of Repaglinide: in Vivo Investigations[ J]. J. Control. Release, 2006, 113: 111-116.

[10]

Wu C., Chang J. Degradation, Bioactivity, and Cytocompatibility of Diopside, Akermanite, and Bredigite Ceramics[J]. J. Biomed. Mater. Res., B, 2007, 83: 153-160.

[11]

Wu C., Chang J., Zhai W., Ni S., Wang J. Porous Akermanite Scaffolds for Bone Tissue Engineering: Preparation, Characterization, and in Vitro Studies[J]. J. Biomed. Mater. Res., B, 2006, 78: 47-55.

[12]

Munukka E., Lepparanta O., Korkeamaki M., Vaahtio M., Peltola T., Zhang D., Hupa L., Ylanen H., Salonen J.I., Viljanen M.K., Eerola E. Bactericidal Effects of Bioactive Glasses on Clinically Important Aerobic Bacteria[J]. J. Mater. Sci. Mater. Med., 2008, 19: 27-32.

[13]

Sipert C.R., Hussne R.P., Nishiyama C.K., Torres S.A. In Vitro Antimicrobial Activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland Cement and EndoRez[J]. Int. Endod J., 2005, 38: 539-543.

[14]

Allan I., Newman H., Wilson M. Antibacterial Activity of Particulate Bioglass Against Supra- and Subgingival Bacteria[ J]. Biomaterials, 2001, 22: 1683-1687.

[15]

Hench L. L. Bioceramics[J]. J. Am. Ceram. Soc., 1998, 81: 1705-1728.

[16]

Zhao W., Chang J. Sol-gel Synthesis and in Vitro Bioactivity of Tricalcium Silicate Powders[J]. Mater. Lett., 2004, 58: 2350-2353.

[17]

Wu C., Chang J. A Novel Akermanite Bioceramic: Preparation and Characteristics[J]. J. Biomater. Appl., 2006, 21: 119-129.

[18]

Nassif N., Bouvet O., Noelle Rager M., Roux C., Coradin T., Livage J. Living Bacteria in Silica Gels[J]. Nat. Mater., 2002, 1: 42-54.

[19]

Popovic Z., Otter M., Calzaferri G., De Cola L. Self-Assembling Living Systems with Functional Nanomaterials[ J]. Angew. Chem. Int. Ed. Engl., 2007, 46: 6188-6191.

[20]

Xia W., Chang J., Lin J., Zhu J. The pH-controlled Dual-drug Release from Mesoporous Bioactive Glass/Polypeptide Graft Copolymer Nanomicelle Composites[J]. Eur. J. Pharm. Biopharm., 2008, 69: 546-552.

[21]

Bellantone M., Coleman N.J., Hench L.L. Bacteriostatic Action of a Novel four-component Bioactive Glass[J]. J. Biomed. Mater. Res., 2000, 51: 484-490.

[22]

Zhao W., Chang J., Wang J., Zhai W., Wang Z. In Vitro Bioactivity of Novel Tricalcium Silicate Ceramics[J]. J. Mater. Sci. Mater. Med., 2007, 18: 917-923.

[23]

Kamberi M., Tsutsumi K., Kotegawa T., Kawano K., Nakamura K., Niki Y., Nakano S. Influences of Urinary pH on Ciprofloxacin Pharmacokinetics in Humans and Antimicrobial Activity in Vitro Versus Those of Sparfloxacin[ J]. Antimicrob. Agents. Chemother., 1999, 43: 525-529.

[24]

Waltimo T., Brunner T.J., Vollenweider M., Stark W.J., Zehnder M. Antimicrobial Effect of Nanometric Bioactive Glass 45S5[J]. J. Den.t Res., 2007, 86: 754-757.

[25]

Sepulveda P., Jones J.R., Hench L.L. Haracterization of Melt-derived 45S5 and Sol-gel-derived 58S Bioactive Glasses[J]. J. Biomed. Mater. Res., 2001, 58: 734-740.

[26]

Zhang D., Hupa M., Hupa L. In Situ pH Within Particle Beds of Bioactive Glasses[J]. Acta. Biomater., 2008, 4: 1498-1505.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/