Sol-gel-derived hybrid conductive films for electromagnetic interference (EMI) shielding

Jiyuan Xie , Wenfeng Guo , Jianzhong Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 216 -221.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 216 -221. DOI: 10.1007/s11595-011-0200-x
Article

Sol-gel-derived hybrid conductive films for electromagnetic interference (EMI) shielding

Author information +
History +
PDF

Abstract

The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix, and the hybrid films were obtained by a sol-gel method. The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process. Hybrid films were dip-coated on silicon wafer and cured at 120 °C for 60 minutes. The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraction (XRD). The electrical properties of the films were examined with four-point probe. Hybrid films showed to be relatively dense, uniform and defect free. The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film. It was observed that there was the percolation threshold for the film’s electrical properties.

Keywords

sol-gel / hybrid films / conductive / EMI shielding

Cite this article

Download citation ▾
Jiyuan Xie, Wenfeng Guo, Jianzhong Wang. Sol-gel-derived hybrid conductive films for electromagnetic interference (EMI) shielding. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 216-221 DOI:10.1007/s11595-011-0200-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joo J., Lee C. Y. High Frequency Electromagnetic Interference Shielding Response of Mixtures and Multilayer Films Based on Conducting Polymers[J]. J. Appl. Phys., 2000, 88: 513-518.

[2]

Lee B. O., Woo W. J., Park H. S., Hahm H. S., Wu J. P., Kim M. S. Influence of Aspect Ratio and Effect on EMI Shielding of Coating Materials Fabricated with Carbon Nanofiber/PVDF[J]. J. Mater. Sci., 2002, 37: 1839-1843.

[3]

Huang C.-Y., Mo W.-W., Roan M.-Lih. Studies on the Influence of Double-layer Electroless Metal Deposition on the Electromagnetic Interference Shielding Effec-Tiveness of Carbon Fiber/ABS Composites[J]. Surf. Coat. Technol., 2004, 184(2–3): 163-169.

[4]

Osborne Joseph H., Blohowiak Kay Y., Ray T. S., Chad H., Gordon B., Brendon C., Dan B. Donley Michael S. Testing and Evaluation of Nonchromated Film Systems for Aerospace Applications[J]. Prog. Org. Coat, 2001, 41(4): 217-225.

[5]

Motojima S., Noda Y., Hoshiya S., Hishikawa Y. Electromagnetic Wave Absorption Property of Carbon Microcoils in 12–110 GHz Region[J]. J. Appl. Phys., 2003, 94: 2325-2330.

[6]

Kim H. M., Kim K., Lee C. Y., Joo J., Cho S. J., Yoon H. S., Pejaković D. A., Yoo J. W., Epstein A. J. Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst[J]. Appl. Phys. Lett., 2004, 84(4): 589-591.

[7]

Tark H. J., Young K. S., Seok W. J., Geon-Woong L. Transparent, Conductive, and Superhydrophobic Films from Stabilized Carbon Nanotube/Silane Sol Mixture Solution[J]. Adv. Mater., 2008, 20: 3724-37278.

[8]

Makela T., Pienimaa S., Taka T., Jussila S., Isotalo H. Thin Polyaniline Films in EMI Shielding[J]. Synth. Met., 1997, 85(1–3): 1335-1336.

[9]

Joo J., Lee C. Y., Song H. G., Kim J. W., Jang K. S., Oh E. J., Epstein A. J. Enhancement of Electromagnetic Interference Shielding Efficiency of Polyaniline Through Mixture and Chemical Doping[J]. Mol. Cryst. Liq. Cryst., 1998, 316: 367-370.

[10]

Wu Q., Xue Z., Qi Z., Wang F. Synthesis and Characterization of PAn/clay Nanocomposite with Extended Chain Conformation of Polyaniline[J]. Polymer, 2000, 41(6): 2029-2032.

[11]

Roux S., Soler-Illia G. J. A. A., Demoustier-Champagne S., Audebert P., Sanchez C. Titania/Polypyrrole Hybrid Nanocomposites Built from In-Situ Generated Organically Functionalized Nanoanatase Building Blocks[J]. Adv. Mater., 2003, 15(3): 217-221.

[12]

Vignesh P., Zhu D., van Ooij Wim J. Nanoparticle-filled Silane Films as Chromate Replacements for Aluminum Alloys[J]. Prog. Org., Coat, 2007, 47(3–4): 384-392.

[13]

Messaddeq S. H., Pulcinelli S. H., Santilli C. V., Guastaldi A. C., Messaddeq Y. Microstructure and Corrosion Resistance of Inorganic-organic (ZrO2-PMMA) Hybrid Coating on Stainless Steel[J]. J. Non-Cryst. Solids, 1999, 247(1–3): 164-170.

[14]

Joshua D. Y., Damron M., Tang G., Zheng H., Chu C. J., Osborne Joseph H. Inorganic/Organic Hybrid Coatings for Aircraft Aluminum Alloy Substrates[J]. Prog. Org. Coat, 2001, 41(4): 226-232.

[15]

Salvatore G., Costanzo Lucia L., Giorgio V., Corrado B. Photochemical Synthesis of Copper Nanoparticles Incorporated in Poly(Vinyl Pyrrolidone)[J]. J. Nanopart. Res., 2008, 10: 1183-1192.

[16]

Xiong Y., Washio I., Chen J., Cai H., Li Z.Y., Xia Y. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Noble Metal Nanoplates in Aqueous Solutions[J]. Langmuir., 2006, 22(20): 8563-8570.

[17]

Hiromitsu K., Masahiro K., Toshihiro H., Katsumi Katayama. Crack-free, Thick Ceramic Coating Films via Non-repetitive Dip-coating Using Polyvinylpyrolidone as Stress-relaxing Agent[J]. J. Sol-Gel Sci. Tech., 2000, 19: 205-209.

[18]

Zhu D., van O., Wim J. Structural Characterization of Bis-[triethoxysilylpropyl Tetrasulfide and Bis-[trimethoxysilylpropyl Amine Silanes by Fourier-transform Infrared Spectroscopy and Electrochemical Impedance Spectroscopy[J]. J. Adhes. Sci. Technol., 2002, 16(9): 1235-1260.

[19]

Zhu D., van Ooij Wim J. Corrosion Protection of Metals by Water-based Silane Mixtures of Bis-[trimethoxysilylpropyl] amine and Vinyltriacetoxysilane[J]. Prog. Org. Coat, 2004, 49(1): 42-53.

[20]

Bertelsen C. M., Boerio F. J. Linking Mechanical Properties of Silanes to Their Chemical Structure: An Analytical Study of γ-GPS Solutions and Films[J]. Prog. Org. Coat, 2001, 41(4): 239-246.

[21]

Franquet Terryn H., Vereecken J. Composition and Thickness of Non-functional Organosilane Films Coated on Aluminium Studied by Means of Infra-red Spectroscopic Ellipsometry[ J]. Thin Solid Films, 2003, 441(1–2): 76-84.

[22]

Suzuki K., Hashimoto N., Oyama T., Shimizu J., Akao Y., Kojima H. Large Scale and Low Resistance ITO Films Formed at high Deposition Rates[J]. Thin Solid Films, 1993, 226(1): 104-109.

[23]

Mok K. W., Young K. D., In-kyu L., Woon S. Y., Byung-ki C., Sung L. T., In-ho K., Seok L. K. The Electromagnetic Interference Shielding Effect of Indium-zinc Oxide/Silver Alloy Multilayered Thin Films[J]. Thin Solid Films, 2005, 473(2): 315-320.

[24]

Camacho J. M., Castro-R R., Pena J. L. Transparent Conductive Oxide Thin Films of CdTe-doped Indium Oxide Prepared by Pulsed-laser Deposition[J]. Optics and Laser Technology, 2008, 40(7): 895-900.

[25]

Listkiewicz Kusy E. Percolation Network for Thick Resistive Films[J]. Solid-State Electronics, 1988, 31(5): 821-830.

[26]

Hubert T. H., Shimamura A., Klyszcz A. Electrical Properties of Carbon Black and Ruthenium Dioxide Embedded Silica Films[J]. J. Sol-Gel Sci. Technol., 2004, 32: 131-135.

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/