Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process

Zhixia Xiao , Lijing Zheng , Lei Wang , Lili Yang , Hu Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 197 -201.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 197 -201. DOI: 10.1007/s11595-011-0196-2
Article

Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process

Author information +
History +
PDF

Abstract

The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient. The analysis shows that it is solidified with primary β cells/dendrites, and then α phase is formed through peritectic reaction. Once the columnar grains grow into the steady state, the lamellar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction. In addition, α phase grain nucleates from β-interdendrite regions, and grows up to the dendritic trunk. If no other α grain hinders its growth, it would occupy the whole dendrite, or it would stop at the dendritic trunk for the weakened motivating drive in the β dendritic core.

Keywords

TiAl-based alloy / directional solidification / lamellar orientation / peritectic reaction

Cite this article

Download citation ▾
Zhixia Xiao, Lijing Zheng, Lei Wang, Lili Yang, Hu Zhang. Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 197-201 DOI:10.1007/s11595-011-0196-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo W., Shen J., Min Z., . Lamellar Orientation Control of TiAl Alloys under High Temperature Gradient with a Ti-43Al-3Si Seed [J]. J.Cryst.Growth, 2008, 310(24): 5441-5446.

[2]

Yamaguchi M., Inui H., Ito K. High-temperature Structural Intermetallics[J]. Acta Mater., 2000, 48(1): 307-322.

[3]

Dimiduk D. M. Gamma Titanium Aluminide Alloys-An assessment within the Competition of Aerospace Structural Materials[J]. Mater. Sci. Eng. A, 1999, 263(2): 281-288.

[4]

Kim Y. W. Gamma Titanium Aluminide: Their Status and Future[J]. JOM., 1995, 47(7): 39-41.

[5]

Kishida K., Johnson D. R., Masuda Y., . Deformation and Fracture of PST Crystals and Directionally Solidified Ingots of TiAl-based Alloys[J]. Intermetallics, 1998, 6(7–8): 679-683.

[6]

Yamaguchi M., Johnson D. R., Lee H. N., . Directional Solidifcation of TiAl-base Alloys [J]. Intermetallics, 2000, 8(5–6): 511-517.

[7]

Johnson D. R., Inui H., Muto S., . Microstructural Development during Directional Solidification of α-seeded TiAl Alloys[J]. Acta Mater., 2006, 54(4): 1077-1085.

[8]

Takeyama M., Yamamoto Y., Morishima H., . Lamellar Orientation Control of Ti-48Al PST Crystal by Unidirectional Solidification[J]. Mater. Sci. Eng. A, 2002, 329–331: 7-12.

[9]

Lee H. N., Johnson D. R., Inui H., . Microstructural Control through Seeding and Directional Solidification of TiAl Alloys Containing Mo and C[J]. Acta Mater., 2000, 48(12): 3221-3233.

[10]

Johnson D. R., Chihara K., Inui H., . Microstructural Control of TiAl-Mo-B Alloys by Directional Solidification[J]. Acta Mater., 1998, 46(18): 6529-6540.

[11]

Johnson D. R., Masuda Y., Inui H., . Alignment of the TiAl/Ti3Al Lamellar Microstructure in TiAl Alloys by Directional Solidification[J]. Mater. Sci. Eng. A, 1997, 239–240: 577-583.

[12]

Johnson D. R., Inui H., Yamaguchi M. Directional Solidification and Microstructure Control of the TiAl/Ti3Al Lamellar Microstructure in TiAl-Si Alloys[J]. Acta Mater., 1996, 44(6): 2523-2535.

[13]

Jung I. S., Jang H. S., Oh M. H., . Microstructure Control of TiAl Alloys Containing β Stabilizers by Directional Solidification[J]. Mater. Sci. Eng. A, 2002, 329–331: 13-18.

[14]

Saari H., Beddoes J., Seo D. Y., . Development of directionally Solidified γ-TiAl Structures[J]. Intermetallics, 2005, 13(9): 937-943.

[15]

Jung I. S., Kim M. C., Lee J. H., . High Temperature Phase Equilibria Near Ti-50 at% Al Composition in Ti-Al System Studied by Directional Solidifcation[J]. Intermetallics, 1999, 7(11): 1247-1253.

[16]

Kim M. C., Oh M. H., Lee J. H., . Composition and Growth rate Effects in Directionally Solidified TiAl Alloys[J]. Mater. Sci. Eng. A, 1997, 239–240: 570-576.

[17]

Fu H. Z., Guo J. J., Liu L., . Directional Solidification and Processing of Advanced Materials [M], 2008 Beijing Science Publications 502

[18]

Kurz W., Fisher D. J. Fundamentals of Solidification[M], 1998 4th edn. Switzerland Trans Tech Publications 88

[19]

Denquin A., Naka S. Phase Transformation Mechanisms involved in Two-phase TiAl-based Alloys-I. Lamellar Structure Formation[J]. Acta Mater., 1996, 44(1): 343-352.

[20]

Hecht U., Witusiewicz V., Drevermann A., . Grain refinement by Low Boron Additions in Niobium-rich TiAl-based Alloys[J]. Intermetallics, 2008, 16(8): 969-978.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/