Corrosion behaviors of P110 steel and chromium coating in CO2-saturated simulated oilfield brine

Naiming Lin , Faqin Xie , Jun Zhou , Xiangqing Wu , Wei Tian

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 190 -196.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 190 -196. DOI: 10.1007/s11595-011-0195-3
Article

Corrosion behaviors of P110 steel and chromium coating in CO2-saturated simulated oilfield brine

Author information +
History +
PDF

Abstract

The protective chromium coating was prepared on P110 steel by employing pack cementation. The corrosion behaviors of P110 steel and the obtained coating in CO2-saturated simulated oilfield brine were studied by static complete immersion tests and electrochemical measurements. The corrosion attacks of the samples were determined by mass loss, corroded surface morphologies, corrosion products, and results of electrochemical measurements. The experimental results showed that the coating was uniform, continuous and compact. The chromium coating was slightly corroded, and the mass loss and corrosion rate of the coating were far lower than those of P110 steel. Chromium coating has higher self-corroding potential and lower corrosion current density than P110 steel in accordance with the electrochemical tests results. Taken as a whole, chromizing treatment has significantly improved the corrosion resistance of P110 steel.

Keywords

corrosion behavior / P110 steel / chromium coating / simulated oilfield brine

Cite this article

Download citation ▾
Naiming Lin, Faqin Xie, Jun Zhou, Xiangqing Wu, Wei Tian. Corrosion behaviors of P110 steel and chromium coating in CO2-saturated simulated oilfield brine. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 190-196 DOI:10.1007/s11595-011-0195-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li H. L., Zhang Y. P., Han L. H. Development Situation of OCTG and Production Localization of Hi-grade OCTG-Part I[J]. Steel Pipe, 2007, 36(6): 1-6.

[2]

Li H. L., Zhang Y. P., Han L. H. Development Situation of OCTG and Production Localization of Hi-grade OCTG-Part II[J]. Steel Pipe, 2008, 37(1): 1-6.

[3]

Pfennig A., Bäßler R. Effect of CO2 on the Stability of Steels with 1% and 13% Cr in Saline Water[J]. Corrosion Science, 2009, 51: 931-940.

[4]

Moreira R. M., Franco C. V., Joia C. J. B. M., . The Effects of Temperature and Hydrodynamics on the CO2 Corrosion of 13Cr and 13Cr5Ni2Mo Stainless Steels in the Presence of Free Acetic Acid[J]. Corrosion Science, 2004, 46: 2987-3003.

[5]

Carvalho D. S., Joia C. J. B. M., Mattos O. R. Corrosion Rate of Iron and Iron-chromium Alloys in CO2 Medium[J]. Corrosion Science, 2005, 47: 2974-2986.

[6]

Heuer J. K., Stubbins J. F. An XPS Characterization of FeCO3 Films from CO2 Corrosion[J]. Corrosion Science, 1999, 41: 1231-1243.

[7]

Villarreal J., Laverde D., Fuentes C. Carbon-steel Corrosion in Multiphase Slug Flow and CO2[J]. Corrosion Science, 2006, 48: 2363-2367.

[8]

Liu D. X. Corrosion and Protection of Materials[M], 2006 Xi’an Northwestern Polytchnical University Press

[9]

Okafor P. C., Liu X., Zheng Y. G. Corrosion Inhibition of Mild Steel by Ethylamino Imidazoline Derivative in CO2 -saturated Solution[J]. Corrosion Science, 2009, 51: 761-768.

[10]

Zhao G. X., Lv X. H., Xiang J. M., . Formation Characteristic of CO2 Corrosion Product Layer of P110 Steel Investigated by SEM and Electrochemical Techniques[J]. J. Iron and Steel Research Inter., 2009, 16(4): 89-94.

[11]

Xiong Y., Chen D. J. Research on CO2 Corrosion Protection Technology in Oil and Gas Field[J]. Total Corrosion Control, 2007, 21(4): 2-4.

[12]

Zhang Z. Corrosion Mechanism of Well Tubulars and Research of Protective Coating Under Harsh Surroundings[D], 2005 Chengdu Southwest Petroleum University

[13]

Xu J. Study on Breakage Mechanism of Completion Pipe Srting and W ell Head Assembly in High Temperature, High Pressure, High Production Gas Well[D], 2005 Chengdu Southwest Petroleum University

[14]

Li C. F. Study on CO 2 Corrosion Mechanism and Protection Technology in the Exploitation of Oil and Gas[D], 2004 Chengdu Southwest Petroleum University

[15]

Cao X. M., Wen M., Du A. Modern Metal Surface Alloying Technologies[M], 2007 Beijing Chemical Industrial Press

[16]

Vourlias G., Pistofidis N., Chaliampalias D., . Zinc Deposition with Pack Cementation on Low Carbon Steel Substrates[J]. J. Alloys and Compounds, 2006, 416: 125-130.

[17]

Lee S. B., Cho K. H., Lee W. G., . Improved Corrosion Resistance and Interfacial Contact Resistance of 316L Stainless-steel for Proton Exchange Membrane Fuel Cell Bipolar Plates by Chromizing Surface Treatment[J]. J. Power Sources, 2009, 187: 318-323.

[18]

Wang Z. B., Lv J., Lu K. Wear and Corrosion Properties of a Low Carbon Steel Processed by means of SMAT Followed by Lower Temperature Chromizing Treatment[J]. Surface and Coatings Technology, 2006, 201: 2796-2801.

[19]

Houngninou C., Chevalier S., Larpin J. P. Synthesis and Characterization of Pack Cemented Aluminide Coatings on Metals[J]. Applied Surface Science, 2004, 236: 256-269.

[20]

Tsipas S. A., Omar H., Perez F. H., . Boroaluminide Coatings on Ferritic-martensitic Steel Deposited by Low-Temperature Pack Cementation[J]. Surface and Coatings Technology, 2008, 202: 3 263-3 271.

[21]

Peng X. M., Xia C. Q., Liu Y. Y., . Surface Molybdenizing on Titanium by Halide-activated Pack Cementation[J]. Surface and Coatings Technology, 2009, 203: 3306-3310.

[22]

Zhou Y. B., Chen H., Zhang H., . Preparation and Oxidation of an Y2O3-dispersed Chromizing Coating by Pack Cementation at 800 °C[J]. Vacuum, 2008, 82: 748-753.

[23]

Huang Y. S., Huang C. E. Review of Chromizing Technology and Perspective[J]. J. Shaoguan University-Naurt. Sci. Ed., 2004, 25(6): 49-52.

[24]

Chen C. F. Research on Electro-chemical Behavior and Corrosion Scale Characteristics of CO 2 Corrosion for Tubing and Casing Steel[D], 2002 Xi’an Northwestern Polytchnical University

[25]

Fan A. L., Qin L., Tian L. H., . Corrosion Resistance of Molybdenum Nitride Modified Ti6Al4V Alloy in HCl Solution[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2008, 23(3): 358-361.

[26]

Chen C. F., Zhao G. X., Lu M. X., . Study of CO2 Corrosion Scales on N80 Steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22(3): 143-146.

[27]

Palacios C. A., Shaldey J. R. Characteristic of Corrosion Scales on Steels in a CO2-saturated NaCl Brine[J]. Corrosion, 1991, 47(2): 122-127.

[28]

Li D. G., Feng Y. R., Bai Z. Q., . Effect of Chloride Ion on Corrosion Behavior of N80 Steel in CO2 Solution[J]. Corros. Sci. Prot. Technol., 2007, 19(5): 329-331.

[29]

Lv X. H., Zhao G. X., Lu M. X. A Comparision Study on Dynamic and Static Corrosion of N80 Steel Induced by CO2[J]. Corros. Sci. Prot. Technol., 2003, 15(1): 5-8.

[30]

He Q. L., Meng H. M., Yu H. Y., . Recent Developments in Carbon Dioxide Corrosion of N80 Well Tube Steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27(3): 188-192.

[31]

Ren C. Q., Liu D. X., Bai Z. Q., . Corrosion Behavior of Oil Tube Steel in Stimulant Solution with Hydrogen Sulfide and Carbon Dioxide [J]. Mat. Chemis. Phys., 2005, 93: 305-309.

[32]

Waard C. D., Millims D. E. Carbon Acid Corrosion of Steel[J]. Corrosion, 1975, 31(5): 177-181.

[33]

Davies D. H., Burstein G. T. The Effects of Bicarbonate on the Corrosion and Passivation of Steel[J]. Corrosion, 1980, 36(8): 416-422.

[34]

Linter B. R., Burstein G. T. Reaction of Pipeline Steels in Carbon Dioxide Solutions[J]. Corros. Sci., 1999, 41(2): 117-139.

[35]

Chen C. F., Zhao G. X., Yan M. L., . Characteristics of CO2 Corrosion Scales on Cr-containing N80 Steel[J]. J. Chin. Soc. Corros. Prot., 2002, 22(6): 335-338.

[36]

Chen C. F., Lu M. X., Zhao G. X., . Characteristics of CO2 Corrosion Scales on 1% Cr-containing N80 Steel[J]. J. Chin. Soc. Corros. Prot., 2003, 23(6): 330-334.

[37]

Wu S. L., Cui Z. D., He F., . Characterization of the Surface Film Formed from Carbon Dioxide Corrosion on N80 Steel[J]. Materials Letters, 2004, 58: 1076-1081.

[38]

Ogundele G. I., White W. E. Some Observation on Corrosion of Carbon Steel in Aqueous Environments Contain Carbon Dioxide[J]. Corrosion, 1986, 42(2): 71-76.

[39]

Nešić S., Postlethwaite J., Olsen S. An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions[J]. Corrosion, 1996, 52(4): 280-294.

[40]

Lin N. M., Xie F. Q., Zhong T., . Influence of Adding Various Rare Earths on Microstructures and Corrosion Resistance of Chromizing Coatings Prepared via Pack Cementation on P110 Steel [J]. J. Rare Earths, 2010, 28(2): 301-304.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/