Effects of strain rate on dislocation for TA15 alloy during hot compressive deformation

Yong Liu , Jingchuan Zhu , Yang Yue , Yang Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 186 -189.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (2) : 186 -189. DOI: 10.1007/s11595-011-0194-4
Article

Effects of strain rate on dislocation for TA15 alloy during hot compressive deformation

Author information +
History +
PDF

Abstract

The effects of strain rate on the dislocation type and dislocation configure of TA15 alloy were investigated. The experimental results show that the operating dislocation type changes from $\bar c$ type to $\bar c$ and $\bar a + \bar c$ type with increasing strain rate under the deformation condition of 900 °C, 60% strain. Under the condition of 900 °C, 60% strain and 0.001/s strain rate, lots of orientate dislocation cellular configurations and sub-grains, many dislocations pile up before sub boundary. When the strain rate increases to 0.1/s, some dislocations exhibit curved and dislocation tangles and pile-ups can be found, suggesting more dislocations and much stronger interactions among dislocations.

Keywords

TA15 alloy / hot deformation / dislocation type / dislocation configuration / strain rate

Cite this article

Download citation ▾
Yong Liu, Jingchuan Zhu, Yang Yue, Yang Wang. Effects of strain rate on dislocation for TA15 alloy during hot compressive deformation. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(2): 186-189 DOI:10.1007/s11595-011-0194-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gilbert J. R. B. The use of Titanium[J]. Materials Science and Technology, 1985, 1: 257-262.

[2]

Li X. W., Sha A. X., Zhang W. F. TA15 Alloy and Its Applications in Plane Constructions[J]. Progress in Titanium Industry, 2003, 20(4): 90-94.

[3]

Xu W C, Shan D B, LV Y, et al. Effects of Hot Deformation Parameters on Flow Stress and Establishment of Constitutive Relationship System of BT20 Titanium Alloy[J]. Trans. Nonferrous Met. Soc., 2005, (15): 167–168

[4]

Es-Souni M. Creep Behavior and Creep Microstructures of a High-temperature Titanium Alloy Ti-5.8 Al-4.0Sn-3. 5Zr-0.7 Nb-o.35Si-0.06C(Timetal 834). Part I: Primary and Steady-state Creep[J]. Materials Characterization, 2001, 46: 365-379.

[5]

Viswanathan G. B., Karthikeyan S., Hayes R. W., . Creep Behaviour of Ti-6Al-2n-4Zr-2Mo: II. Mechanisms of Deformation[J]. Acta Materialia, 2002, 50: 4965-4980.

[6]

Viswanathan G. B., Lee E., Dennis M. M., . Direct Observations of Dislocation Substructures Formed by Nano-indentation of the α-phase in an α/β Titanium Alloy[J]. Materials Science and Engineering A, 2005, 400–401: 463-466.

[7]

Castany P., Pettinari-Sturmel F., Cretou J., . Experimental Study of Dislocation Mobility in a Ti-6Al-4V Alloy[J]. Acta Materialia, 2007, 55: 6284-6291.

[8]

Wang X., Ja hazi M., Yue S. Substructure of High Temperature Compressed Titanium Alloy IMI834[J]. Mater. Sci. and Engin., A, 2006, 434: 188-193.

[9]

Liu Y., Zhu J. C., Wang Y. Hot Compressive Deformation Behavior and Microstructure Evolution of Ti-6Al-2Zr-1 Mo-1V Alloy at 1073 K [J]. Materials Science & Engineering A, 2008, 490: 113-116.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/