Antiplasticizing effect of MOCA on poly(vinyl chloride)

Ousheng Zhang , Chaocan Zhang , Lili Wu , Liang Hu , Runhua Hu

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 83 -87.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 83 -87. DOI: 10.1007/s11595-011-0173-9
Article

Antiplasticizing effect of MOCA on poly(vinyl chloride)

Author information +
History +
PDF

Abstract

An obvious antiplasticizing effect has been observed in PVC with small amount of MOCA, 3,3′-dichloro-4,4′-diamino-diphenylmethane. PVC-MOCA interaction and crystallization behavior of PVC/MOCA blends were investigated in detail to explain the mechanism of antiplasticization on the basis of a series of techniques including DMA, FTIR, and DSC. The results of mechanical properties tests show that the tensile strength of PVC with 5 phr of MOCA reaches a maximum value, 69.5 Mpa, which is about 23 % higher than that of pure PVC. The rise in tensile strength was attributed to an antiplasticizing effect of MOCA on PVC as confirmed by DMA measurements. The evidences from FTIR reveal that a strong hydrogen-bonding interaction takes place between the nitrogen atom of -NH2 groups in MOCA and the methine proton of PVC repeat units. The results of DSC analysis indicate that crystallization behavior of MOCA is suppressed completely and the crystallinity of PVC decreases with the increase of MOCA amount.

Keywords

poly(vinyl chloride) / MOCA / antiplasticization / crystallinity / interaction

Cite this article

Download citation ▾
Ousheng Zhang, Chaocan Zhang, Lili Wu, Liang Hu, Runhua Hu. Antiplasticizing effect of MOCA on poly(vinyl chloride). Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(1): 83-87 DOI:10.1007/s11595-011-0173-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kinjo N., Nakagawa T. Antiplasticization in the Slightly Plasticized Poly(vinyl chloride)[J]. Polym. J., 1972, 4: 143-153.

[2]

Bergquist P., Zhu Y., Jones A. A., . Plasticization and Antiplasticization in Polycarbonates: The Role of Diluent Motion[J]. Macromolecules, 1999, 32: 7 925-7 931.

[3]

Vidotti S. E., Chinellato A. C., Hu G. H., . Effects of Low Molar Mass Additives on the Molecular Mobility and Transport Properties of Polysulfone[J]. J. Appl. Polym. Sci., 2006, 101: 825-832.

[4]

Garcia A., Iriarte M., Uriarte C., . Antiplasticization of a Polyamide: a Positron Annihilation Lifetime Spectroscopy Study[J]. Polymer, 2004, 45: 2 949-2 957.

[5]

Vrentas J. S., Duda J. L., Ling H. C. Antiplasticization and Volumetric Behavior in Glassy Polymers[J]. Macromolecules, 1988, 21: 1 470-1 475.

[6]

Suvorova A. I., Hannanova E. G. Molecular Structure of Plasticizers and Antiplasticization[J]. Die Makro. Chemie, 1990, 191: 993-998.

[7]

Jones A. A., Inglefield P. T., Liu Y., . A Lattice Model for Dynamics in a Mixed Polymer-diluent Glass[J]. J. Non-Cryst. Sol., 1991, 131–133: 556-562.

[8]

Tiemblo P., Martinez G., Gómez-Elvira J. M., . On a Novel Interpretation of PVC Antiplasticization Based on Some Local Chain Conformations[J]. Polym. Bull., 1994, 32: 353-359.

[9]

Anderson S. L., Grulke E. A., DeLassus P. T., . Model for Antiplasticization in Polystyrene[J]. Macromolecules, 1995, 28: 2 944-2 954.

[10]

Soong S. Y., Cohen R. E., Boyce M. C., . The Effects of Thermomechanical History and Strain Rate on Antiplasticization of PVC[J]. Polymer, 2008, 49: 1 440-1 443.

[11]

Robeson L. M. The Effect of Antiplasticization on Secondary Loss Transitions and Permeability of Polymers[J]. Polym. Eng. Sci., 1969, 9: 277-281.

[12]

Borek J., Osoba W. Influence of the Plasticization on Free Volume in Poly(vinyl chloride)[J]. J. Polym. Sci. Part B: Polym. Phys., 1998, 36: 1 839-1 845.

[13]

Borek J., Osoba W. Free Volume in Plasticized Poly(vinyl chloride)[J]. J. Polym. Sci. Part B: Polym, Phys., 1996, 34: 1 903-1 906.

[14]

Guerrero S. J. Antiplasticization and Crystallinity in Poly(vinyl chloride)[J]. Macromolecules, 1989, 22: 3 480-3 485.

[15]

Pezzin G., Ajroldi G., Casiraghi T., . Dynamic-mechanical and Tensile Properties of Poly(vinyl chloride). Influence of Thermal History and Crystallinity[J]. J. Appl. Polym. Sci., 1972, 16: 1 839-1 849.

[16]

Romero Tendero P. M., Jimenez A., Greco A., . Viscoelastic and Thermal Characterization of Crosslinked PVC[J]. Euro. Polym. J., 2006, 42: 961-969.

[17]

Rodríguez-Fernández O. S., Gilbert M. Aminosilane Grafting of Plasticized Poly(vinyl chloride) II. Grafting and Crosslinking Reactions[J]. J. Appl. Polym. Sci., 1997, 66: 2 121-2 128.

[18]

Rodríguez-Fernández O. S., Gilbert M. Aminosilane Grafting of Plasticized Poly(vinyl chloride) I. Extent and Rate of Crosslinking[J]. J. Appl. Polym. Sci., 1997, 66: 2 111-2 119.

[19]

González N., Fernández-Berridi M. J. Application of Fourier Transform Infrared Spectroscopy in the Study of Interactions between PVC and Plasticizers: PVC/Plasticizer Pompatibility Versus Chemical Structure of Plasticizer[J]. J. Appl. Polym. Sci., 2006, 101: 1 731-1 737.

[20]

Garnaik B., Sivaram S. Study of Polymer-Plasticizer Interaction by 13C CP/MAS NMR Spectroscopy: Poly(vinyl chloride)-Bis(2-ethylhexyl) Phthalate System[J]. Macromolecules, 1996, 29: 185-190.

[21]

Gilbert M., Ansari K. E. Structure-Property Relationships in PVC Compression Moldings[J]. J. Appl. Polym. Sci., 1982, 27: 2 553-2 561.

[22]

Gilbert M., Vyvoda J. C. Thermal Analysis Technique for Investigating Gelation of Rigid PVC Compounds[J]. Polymer, 1981, 22: 1 134-1 136.

[23]

Dawson P. C., Gilbert M., Maddams W. F. Comparison of X-Ray-Diffraction and Thermal-Analysis Methods for Assessing Order in Poly(vinyl chloride)[J]. J. Polym. Sci. Part B: Polym, Phys., 1991, 29: 1 407-1 418.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/