Superplasticity and superplastic bulging behavior of ZrO2/Ni nanocomposite

Shui Ding , Hongjun Lv , Kaifeng Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 56 -60.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 56 -60. DOI: 10.1007/s11595-011-0167-7
Article

Superplasticity and superplastic bulging behavior of ZrO2/Ni nanocomposite

Author information +
History +
PDF

Abstract

ZrO2/Ni nanocomposite was produced by pulse electrodeposition and its superplastic properties were investigated by the tensile and bulging tests. The as-deposited nickel matrix has a narrow grain size distribution with a mean grain size of 45 nm. A maximum elongation of 605% was observed at 723 K and a strain rate of 1.67×10−3s−1 by tensile test. Superplastic bulging tests were subsequently performed using dies with diameters of 1 mm and 5 mm respectively based on the optimal superplastic forming temperature. The effects of forming temperature and gas pressure on bulging process were experimentally investigated. The results indicated that ZrO2/Ni nanocomposite samples can be readily bulged at 723 K with H/d value (defined as dome apex height over the die diameter) larger than 0.5, indicating that the nanocomposite has good bulging ability. SEM and TEM were used to examine the microstructure of the as-deposited and bulged samples. The observations showed that significant grain coarsening occurs during superplastic bulging, and the microstructure is found to depend on the forming temperature.

Keywords

superplasticity / bulging / microstructure / ZrO2/Ni nanocomposite

Cite this article

Download citation ▾
Shui Ding, Hongjun Lv, Kaifeng Zhang. Superplasticity and superplastic bulging behavior of ZrO2/Ni nanocomposite. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(1): 56-60 DOI:10.1007/s11595-011-0167-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McFadden S. X., Valiev R. Z., Mukherjee A. K. Superplasticity in Nanocrystalline Ni3Al[J]. Mat. Sci. Eng., 2001, 319–321: 849-853.

[2]

McFadden S. X., Zhilyaev A. P., Mishra R. S., . Observation of Low-Temperature Superplasticity in Electrodeposited Ultrafine Grained Nickel[J]. Mater. Lett., 2000, 45(6): 345-349.

[3]

Chan K. C., Wang C. L., Zhang K. F. Low Temperature and High Strain Rate Superplasticity of Ni-1 mass%SiC Nanocomposite[ J]. Mater. Trans., 2004, 45(8): 2 558-2 563.

[4]

Chan K. C., Wang G. F., Wang C. L., . Low Temperature Superplastic Gas Pressure Forming of Electrodeposited Ni/SiCp Nanocomposites[J]. Mat. Sci. Eng., 2005, 404(1–2): 108-116.

[5]

Saotome Y., Iwazaki H. Superplastic Backward Microextrusion of Microparts for Micro-Electro-Mechanical Systems[J]. J. Mater. Process. Tech., 2001, 119(1–3): 307-311.

[6]

Xie J. R., Shao G. Q., Yi Z. L., . The Application of Nanocrystalline Materials[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2004, 26(2): 17-20.

[7]

Ding S., Zhang K. F., Wang C. L. Pulse Electrodeposition and Nanoindentation Test of ZrO2/Ni Nanocomposite[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(3): 462-465.

[8]

Jeyasingh J. J. V., Dhananjayan K., Sinha P. P., . Prediction of Non-Uniform Thinning in Superplastically Formed Spherical Domes[J]. Mat. Sci. Eng., 2004, 20: 229-234.

[9]

Ding S., Zhang K. F., Wang G. F. Superplasticity and Microstructure Evolution of Electrodeposited Nanocrystalline Nickel[J]. Mater. Sci. Forum, 2007, 551–552: 539-544.

[10]

Stowell M. J. Cavity Growth and Failure in Superplastic Alloys[J]. Met. Sci., 1983, 17: 92-98.

[11]

Qu N. S., Zhu D., Chan K. C., . Pulse Electrodeposition of Nanocrystalline Nickel Using Ultra Narrow Pulse Width and High Peak Current Density[J]. Surf. Coat. Tech., 2003, 168(2–3): 123-128.

[12]

Mcfadden S. X., Mukherjee A. K. Sulfur and Superplasticity in Electrodeposited Ultrafine-Grained Ni[J]. Mat. Sci. Eng., 2005, 395(1–2): 265-268.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/