Influence of La-dopant on the material characteristics and supercapacitive performance of MnO2 electrodes

Yanling Lü , Guangjie Shao , Beilong Zhao , Liuli Zhang

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 33 -37.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 33 -37. DOI: 10.1007/s11595-011-0162-2
Article

Influence of La-dopant on the material characteristics and supercapacitive performance of MnO2 electrodes

Author information +
History +
PDF

Abstract

Manganese dioxide was synthesized by electrodeposition method with Mn (CH3COO)2 · 4H2O as a raw material. La(NO3)3 · 6H2O was doped in electroyte during the preparing process to improve the performance of MnO2 electrodes. The micrographs, crystal structure and element content of electrodes were analyzed by SEM, XRD and atomic absorption spectroscopy, respectively. It is found that the La content ratio in the dioxide can be easily controlled by adjusting the composition of the plating solution. Appropriate amount of doped La can increase the surface area of Mn/La materials, resulting in the supercapacitive behavior enhancement. Electrochemical tests show that the specific capacitance is significantely increased from 198.72 F · g−1 to 276.60 F · g−1 by La-doping.

Keywords

manganese dioxide / nanomaterials / deposition / rare earth doping / specific capacitance

Cite this article

Download citation ▾
Yanling Lü, Guangjie Shao, Beilong Zhao, Liuli Zhang. Influence of La-dopant on the material characteristics and supercapacitive performance of MnO2 electrodes. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(1): 33-37 DOI:10.1007/s11595-011-0162-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conway B. E. Electrochemical Supercapacitors[M], 1999 New York Kluwer-Plenum

[2]

Zheng J. P., Jow T. R. New Charge Storage Mechanism for Electrochemical Capacitors[J]. J. Electrochem. Soc., 1995, 142(1): L6-L8.

[3]

Zheng J. P., Cygan P. J., Jow T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors[J]. J. Electrochem. Soc., 1995, 142(8): 2 699-2 703.

[4]

Sugimoto W., Iwata H., Yokoshima K., . Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance[J]. J. Phys.Chem. B, 2005, 109(15): 7 330-7 338.

[5]

Dong X., Shen W., Gu J., . MnO2-Embeddedin-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors[J]. J. Phys. Chem. B, 2006, 110(12): 6 015-6 019.

[6]

Sharma R. K., Oh H. S., Shul Y. G., . Carbon-Supported, Nano-Structured, Manganese Oxide Composite Electrode for Electrochemical Supercapacitor[J]. J. Power Sources, 2007, 173: 1 024-1 028.

[7]

Fu T. T., Liu F. Q., Liu L., . Catalytic Thermal Decomposition of Ammonium Perchlorate Using Manganese Oxide Octahedral Molecular Sieve(OMS)[J]. Catalysis Communications, 2008, 10(1): 108-112.

[8]

Lee H. Y., Goodenough J. B. Supercapacitor Behavior with KCl Electrolyte[J]. J. Solid State Chem., 1999, 144: 220-223.

[9]

Pang S. C., Anderson M. A., Chapman T. W. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide[J]. J. Electrochem. Soc., 2000, 147(2): 444-450.

[10]

Reut T. D., Ronen S. C., David A., . Mandler Electrochemical Co-Deposition of Sol-Gel/Metal Thin Nanocomposite Films[J]. Chemistry of Materials, 2008, 20(13): 4 276-4 283.

[11]

Chin S. F., Pang S. C., Anderson M. A. Material and Electrochemical Characterization of Tetrapropylammonium Manganese Oxide Thin Films as Novel Electrode Materials for Electrochemical Capacitors[J]. J. Electrochem. Soc., 2002, 149(4): A379-A384.

[12]

Broughton J. N., Brett M. J. Electrochemical Capacitance in Manganese Thin Films with Chevron Microstructure[J]. Electrochemical and Solid-State Letters, 2002, 5(12): A279-A282.

[13]

Djurfors B., Broughton J. N., Brett M. J., . Microstructural Characterization of Porous Manganese Thin Films for Electrochemical Supercapacitor Applications[J]. J. Mater. Sci., 2003, 38(24): 4 817-4 830.

[14]

Broughton J. N., Brett M. J. Investigation of Thin Sputtered Mn Films for Electrochemical Capacitors[J]. J. Electrochim. Acta, 2004, 49: 4 439-4 446.

[15]

Hu C. C., Tsou T. W. Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition. Electrochem[J]. Commun., 2002, 4: 105-109.

[16]

Chang J. K., Tsai W. T. Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors[J]. J. Electrochem. Soc., 2003, 150: A1 333-A1 337.

[17]

Chang J. K., Chen Y. L., Tsai W. T. Effect of Heat Treatment on Material Characteristics and Pseudo-Capacitive Properties of Manganese Oxide Prepared by Anodic Deposition[J]. J. Power Sources, 2004, 135: 344-353.

[18]

Chang J. K., Hsieh W. C., Tsai W. T. Manganese Oxide/Carbon Composite Electrodes for Electrochemical Capacitors Electrochem[ J]. Commun., 2004, 6: 666-671.

[19]

Chang J. K., Hsieh W. C., Tsai W. T. Microstructure and Pseudocapacitive Performance of Anodically Deposited Manganese Oxide with Various Heat-Treatments[J]. J. Electrochem. Soc., 2005, 152: A2 063-A2 066.

[20]

Chen X. D., He X. M. The Effect of the Recess Shape on Performance Analysis of the Gas-lubricated Bearing in Optical Lithography[J]. Tribology International, 2006, 39(11): 1 336-1 341.

[21]

Gamby J., Tabema P. L., Simon P., . Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors[J]. J. Power Sources, 2001, 101: 109-116.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/