Growth of carbon encapsulated long nickel nanorods on bulk nickel substrate

Xiaobei Bin , Jiazang Chen , Jun Xue , Xuehua Wang , Wenmao Tu , Hong Cao

Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 28 -32.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2011, Vol. 26 ›› Issue (1) : 28 -32. DOI: 10.1007/s11595-011-0161-0
Article

Growth of carbon encapsulated long nickel nanorods on bulk nickel substrate

Author information +
History +
PDF

Abstract

Carbon nanotube encapsulated nickel nanorods were catalytic grown via pyrolysis of oil on a bulk nickel wire substrate. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectroscopy were employed to characterize the as-prepared sample. The results show that, carbon nanotubes possess several microns in length, the filled metallic nickel nanorods with a uniform diameter of 35 nm were tightly encapsulated by the carbon capsules. The detailed formation mechanism for the carbon nanotubes encapsulated nickel nanorods were discussed briefly.

Keywords

carbon nanotube / nickel nanorod / pyrolysis / core-shell

Cite this article

Download citation ▾
Xiaobei Bin, Jiazang Chen, Jun Xue, Xuehua Wang, Wenmao Tu, Hong Cao. Growth of carbon encapsulated long nickel nanorods on bulk nickel substrate. Journal of Wuhan University of Technology Materials Science Edition, 2011, 26(1): 28-32 DOI:10.1007/s11595-011-0161-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Majetich S. A., Artman J. O., McHenry M. E., . Preparation and Properties of Carbon Coated Magnetic Nano-crystallites[J]. Physical Review B, 1993, 48: 16 845-16 850.

[2]

McHenry M. E., Majetich S. A., Artman J. O., . Superparamagnetism in Carbon-coated Co Particles Produced by the Kratschmer Carbon Arc Process[J]. Physical Review B, 1994, 49(16): 11 358-11 364.

[3]

Tyagi P. K., Misra D. S., Misra A., . Single Crystalline Nickel Nanorods Inside Carbon Nanotubes: Their Growth Behaviour, Structure and Magnetic Properties[J]. Journal of Nanoscince and Nanotechnology, 2005, 5(4): 596-600.

[4]

Fujita T., Hayashi Y., Tokunaga T., . Cobalt Nanorods Fully Encapsulated in Carbon Nanotube and Magnetization Measurements by Off-axis Electron Holography[J]. Applied Physics Letters, 2006, 88: 243 118-243 120.

[5]

Fujita T., Chen M., Wang X., . Electron Holography of Single-crystal Iron Nanorods Encapsulated in Carbon Nanotubes[ J]. J. Appl. Phys., 2007, 101: 014 323-014 325.

[6]

Joly-Pottuz L., Vacher B., Mogne T. L., . The Role of Nickel in Ni-containing Nanotubes and Onions as Lubricant Aadditives[J]. Tribol. Lett., 2008, 29: 213-219.

[7]

Lee H., Yoon S. W., Kim E. J., . In-situ Growth of Copper Sulfide Nanocrystals on Multiwalled Carbon Nanotubes and Their Application as Novel Solar Cell and Amperometric Glucose Sensor Materials[J]. Nano. Lett., 2007, 7(3): 778-784.

[8]

Sevilla M., Sanchis C., Valdes-Solis T., . Direct Synthesis of Graphitic Carbon Nanostructures from Saccharides and Their Use as Electrocatalytic Supports[J]. Carbon, 2008, 46: 931-939.

[9]

Arruebo M., Fernández-Pacheco R., Ibarra M. R., . Magnetic Nanoparticles for Drug Delivery[J]. Nanotoday, 2007, 2(3): 22-32.

[10]

Hilder T. A., Hill J. M. Modelling the Encapsulation of the Anticancer Drug Cisplatin into Carbon Nanotubes[J]. Nanotechnology, 2007, 18: 5 704-5 711.

[11]

Setlur A. A., Dai J. Y., Lauerhaas J. M., . Formation of Filled Carbon Nanotubes and Nanoparticles Using Polycyclic Aromatic Hydrocarbon Molecules[J]. Carbon, 1998, 36: 721-723.

[12]

Liu S., Zhu J., Mastai Y., . Preparation and Characteristics of Carbon Nanotubes Filled with Cobalt[J]. Chem. Mater., 2000, 12: 2 205-2 211.

[13]

Hayashi Y., Fujita T., Tokunaga T., . Encapsluation of Co and Pd Multi-metal Nanowires Inside Multiwalled Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition[J]. Diamond & Related Materials, 2007, 16: 1 200-1 203.

[14]

Guan L., Shi Z., Li H., . Super-long Continuous Ni Nanowires Encapsulated in Carbon Nanotubes[J]. Chem. Commun., 2004, 17: 1 988-1 989.

[15]

Hamaoui B. E., Zhi L., Wu J., . Uniform Carbon and Carbon Cobalt Nanostructures by Solid-state Thermolysis of Polyphenylene[J]. Adv. Mater., 2005, 17: 2 957-2 960.

[16]

Huo J., Song H., Chen X., . Formation and Transformation of Carbon-encapsulated Iron Carbideiron Nanorods[J]. Carbon, 2006, 44: 2 849-2 867.

[17]

Huo J., Song H., Chen X., . From Carbon-Encapsulated Iron Nanorods to Carbon Nanotubes[J]. J. Phys. Chem. C, 2008, 112: 5 835-5 839.

[18]

Liu B. H., Ding J., Zhong Z. Y., . Large-scale Preparation of Carbon-encapsulated Cobalt Nanoparticles by the Catalytic Method[J]. Chemical Physics Letters, 2002, 358: 96-102.

[19]

Tuinstra F., Koenig J. L. Raman Spectrum of Graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1 126-1 131.

[20]

Tan P. H., Deng Y. M., Zhao Q. Temperature-dependent Raman Spectra and Anomalous Raman Phenomenon of Highly Oriented Pyrolytic Graphite[J]. Physical Review B, 1998, 58(9): 5 435-5 439.

[21]

Tan P. H., An L., Liu L. Q., . Probing the Phonon Dispersion Relations of Graphite from the Double-resonance Process of Stokes and Anti-Stokes Raman Scatterings in Multiwalled Carbon Nanotubes[J]. Physical Review B, 2002, 66(24): 245 410-245 417.

[22]

Tan P. H., Hu C. Y. Polarization Properties, High-order Raman Spectra, and Frequency Asymmetry between Stokes and Anti-Stokes Scattering of Raman Modes in a Graphite Whisker[J]. Physical Review B, 2001, 64(21): 214 301-214 312.

[23]

Xu Y. H., Zhu Y. H., Zhao F. M., . Electrocatalytic Reductive Dehalogenation of Polyhalogenated Phenols in Aqueous Solution on Ag Electrodes[J]. Applied Catalysis A: General, 2007, 324: 83-86.

[24]

Hofmann S., Sharma R., Ducati C., . In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation[J]. Nano. Lett., 2007, 7(3): 602-608.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/