The mechanism of ground granulated blastfurnace slag preventing alkali aggregate reaction

Qinglin Zhao , Jochen Stark , Ernst Freyburg , Mingkai Zhou

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (2) : 332 -341.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (2) : 332 -341. DOI: 10.1007/s11595-010-2332-9
Article

The mechanism of ground granulated blastfurnace slag preventing alkali aggregate reaction

Author information +
History +
PDF

Abstract

Three different methods were applied to study the alkali content of gelpores in cement. In the closed system, the concentration of K+, Na+ and OH have not reduced with the increase of age. In the open system, the diffusion and transferring of K+ and Na+ towards free space leads to the decrease of total alkali content. In the micro-analysis system, the contents of K+ and Na+ in the first hydrated layer of ground granulated blastfurnace slag (GBFS) are very low, while the contents of calcium and magnesium are relatively high. This phenomenon shows that the mechanism of GBFS preventing alkali aggregate reaction (AAR) is: when GBFS is dissolved by alkali medium, SiO2 and Al2O3 are dissolved into the cement matrix, then around GBFS particles form reaction rings rich in Ca2+ and Mg2+, and the C-S-H gel of positive charges formed in the area repulses K+ and Na+, which are forced to transfer to the mortar’s matrix, pore or mortar sample surface. The transferred K+ and Na+ form alkali gel products with other dissolved ions, then become evenly distributed in the mortar sample and react with Ca(OH)2 in pore solutions to form (Na,K) x−2z·zCa·(SiO2)y·(OH)x gel products; and thus changes the AAR gel products’ structure. The gel products will not expand, and so they can delay expansion destruction.

Keywords

granulated blastfurnace slag (GBFS) / alkali aggregate reaction (AAR) / alkali content / preventing mechanism

Cite this article

Download citation ▾
Qinglin Zhao, Jochen Stark, Ernst Freyburg, Mingkai Zhou. The mechanism of ground granulated blastfurnace slag preventing alkali aggregate reaction. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(2): 332-341 DOI:10.1007/s11595-010-2332-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu B., Pu X.C. Study on Alkaline-aggregate Reaction of Solid Alkaline Component AAS Cement[J]. Journal of Southwest China Institute of Technology, 1997, 12(2): 27-30.

[2]

Tang M.S. Some Theoretical Problems of AAR[J]. Journal of the Chinese Ceramic Society, 1987, 18(14): 365-373.

[3]

Stark J., Wicht B. Dauerhaftigkeit von Beton: der Baustoff als Werkstoff [M], 2001 Berlin Birkhäuser Verl.

[4]

Siebel E., Sylla H. M., Bokern J. Einfluss von Puzzolanischen Betonzusatzstoffe auf die Veremeidung Einer Schädigenden Alkali-Kieselsäure-Reaktion[A]. Tagungsbericht 14. Internationale Baustofftagung[C], ibausil, Band 1, 2000 Weimar F.A. Finger-Institut für Baustoffkunde

[5]

Liu C.X., Wen Z.Y. Alkali — aggregate Reaction in Concrete [M], 1995 Guangzhou South China University of Technology Press

[6]

Meng ZL, Gao YJ etc. Methods for Determining Available Alkalis in Concrete[J]. Journal of Agricultural University of Hebei. 2002, (4):194–196

[7]

Feng XX, Feng NQ. Deleterious Alkali and Non-deleterious Alkali in Cement and Concrete [J]. Concrete, 2000, (10): 3–7

[8]

Zhao Q.L., Zhou M.K., Freyburg E., Stark J. LMPA On the Factors that Influence Alkali Aggregate Reaction Acceleration Test[A]. Research on Concrete Project’s Durability and Its Application[C], 2006 Chengdu, PR China Southwest Jiaotong University Press 81-89.

[9]

DIN EN 197 Teil 1. Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement[S], 2000 Berlin Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V.

[10]

Füchtbauer H. Sedimente und Sedimentgesteine[M], 1988 Stuttgart Schweizerbart’sche Verlagsbuch-handlung

[11]

Berninger AM. Mikrostrukturelle Eigenschaften von Quarz als Bestandteil spät reagierender, alkaliempfindlicher Zuschläge[D]. Dissertation von der Bauhaus-Universität Weimar. Weimar: 2004

[12]

Philipp O., Eifert K. Bestimmung der Alkalireaktivität von Kiesen und Splitten für die Betonherstellung[J]. BFT Betonwerk+Fertigteil-Technik, 2004, 70(10): 6-19.

[13]

DIN EN 196-1. Prüfverfahren für Zement Teil 1: Bestimmung der Festigkeit[M], 1995 Berlin Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V.

[14]

Stark J., Wicht B. Dauerhaftigkeit von Beton: der Baustoff als Werkstoff[M], 2001 Berlin Birkhäuser Verlag

[15]

Schäfer E. Alkalität der Porenlösung — Alkalibindung durch Zementbestandteile[A]. In: Beiträge zum 41. Forschungskolloquium des Deutscher Ausschuss für Stahlbeton [C]. 2002, 121–133

[16]

Zhao Q.L., Stark J., Freyburg E., Zhou M.K. The Mechanism of GBFS Preventing AAR: A Discussion[A]. Proceedings of the 13th International Conference on Alkali-Aggregate Reactions in Concrete[C], 2008 Norway Trondheim 400-410.

[17]

Wang X.L. Metallurgy of iron and steel[M], 2005 Beijing Metallurgical Industry Press

[18]

Zhao Q.L., Wu Z.M., Bu H.Z. Study on the Effect Factors and the Mechanism of Alkali Attack of the Alkali-resisting Glass Containing ZrO2 and Al2O3[J]. Glass and Porcelain Enamel, 2002, 30(6): 18-23.

[19]

Zhao Q.L., Bu H.Z., Wu Z.M. Study of kinetics of SiO2, ZrO2 being Attacked by Alkaline in Alkali Resistance Zirconium Content Glass[J]. Journal of Wuhan University of Technology, 1997, 19(4): 63-67.

[20]

Wieker W., Herr R. Zu einigen Problemen der Chemie des Portlandzements[J]. Zeitschrift für Chemie, 1989, 29(9): 312-327.

[21]

Wieker W, Hübert C, Heidemann D, Ebert R. Zur Reaktion von Alkalibingdungen mit Kieselsäure und Silicaten im Hinblick auf betonschädigende Dehnungsreaktionen[A]. In: Tagungsbericht 14. Internationale Baustofftagung[C], Band 1. Weimar. Deutschland. 2000: 1-0911–1-0929

[22]

Arkins P.W. Physikalische Chemie[M], 2004 Weinheim Wiley-VCH Verlag GmbH

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/