The mechanism of ground granulated blastfurnace slag preventing alkali aggregate reaction
Qinglin Zhao , Jochen Stark , Ernst Freyburg , Mingkai Zhou
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (2) : 332 -341.
The mechanism of ground granulated blastfurnace slag preventing alkali aggregate reaction
Three different methods were applied to study the alkali content of gelpores in cement. In the closed system, the concentration of K+, Na+ and OH− have not reduced with the increase of age. In the open system, the diffusion and transferring of K+ and Na+ towards free space leads to the decrease of total alkali content. In the micro-analysis system, the contents of K+ and Na+ in the first hydrated layer of ground granulated blastfurnace slag (GBFS) are very low, while the contents of calcium and magnesium are relatively high. This phenomenon shows that the mechanism of GBFS preventing alkali aggregate reaction (AAR) is: when GBFS is dissolved by alkali medium, SiO2 and Al2O3 are dissolved into the cement matrix, then around GBFS particles form reaction rings rich in Ca2+ and Mg2+, and the C-S-H gel of positive charges formed in the area repulses K+ and Na+, which are forced to transfer to the mortar’s matrix, pore or mortar sample surface. The transferred K+ and Na+ form alkali gel products with other dissolved ions, then become evenly distributed in the mortar sample and react with Ca(OH)2 in pore solutions to form (Na,K) x−2z·zCa·(SiO2)y·(OH)x gel products; and thus changes the AAR gel products’ structure. The gel products will not expand, and so they can delay expansion destruction.
granulated blastfurnace slag (GBFS) / alkali aggregate reaction (AAR) / alkali content / preventing mechanism
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Meng ZL, Gao YJ etc. Methods for Determining Available Alkalis in Concrete[J]. Journal of Agricultural University of Hebei. 2002, (4):194–196 |
| [7] |
Feng XX, Feng NQ. Deleterious Alkali and Non-deleterious Alkali in Cement and Concrete [J]. Concrete, 2000, (10): 3–7 |
| [8] |
|
| [9] |
DIN EN 197 Teil 1. Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement[S], 2000 Berlin Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V. |
| [10] |
|
| [11] |
Berninger AM. Mikrostrukturelle Eigenschaften von Quarz als Bestandteil spät reagierender, alkaliempfindlicher Zuschläge[D]. Dissertation von der Bauhaus-Universität Weimar. Weimar: 2004 |
| [12] |
|
| [13] |
DIN EN 196-1. Prüfverfahren für Zement Teil 1: Bestimmung der Festigkeit[M], 1995 Berlin Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V. |
| [14] |
|
| [15] |
Schäfer E. Alkalität der Porenlösung — Alkalibindung durch Zementbestandteile[A]. In: Beiträge zum 41. Forschungskolloquium des Deutscher Ausschuss für Stahlbeton [C]. 2002, 121–133 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
Wieker W, Hübert C, Heidemann D, Ebert R. Zur Reaktion von Alkalibingdungen mit Kieselsäure und Silicaten im Hinblick auf betonschädigende Dehnungsreaktionen[A]. In: Tagungsbericht 14. Internationale Baustofftagung[C], Band 1. Weimar. Deutschland. 2000: 1-0911–1-0929 |
| [22] |
|
/
| 〈 |
|
〉 |