Design of structural left-handed material based on topology optimization

Weikai Xu , Shutian Liu , Yangzhang Dong

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (2) : 282 -286.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (2) : 282 -286. DOI: 10.1007/s11595-010-2282-2
Article

Design of structural left-handed material based on topology optimization

Author information +
History +
PDF

Abstract

An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.

Keywords

left-handed materials (LHM) / metamaterials / negative refractive index / material design / topology optimization

Cite this article

Download citation ▾
Weikai Xu, Shutian Liu, Yangzhang Dong. Design of structural left-handed material based on topology optimization. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(2): 282-286 DOI:10.1007/s11595-010-2282-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Veselago V.G. The Electrodynamics of Substances with Simultaneously Negative Value of e ane u[J]. Sov. Phys. Usp., 1968, 10: 509-514.

[2]

Pendry J.B., Holden A.J., Stewart W.J. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Phys. Rev. Lett., 1996, 76: 4773-4776.

[3]

Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J. Low Frequency Plasmons in Thin-wire Structures[J]. J. Phys.: Condens. Matter., 1998, 10: 4785-4809.

[4]

Pendry J.B., Holden A.J., Robbins D.L. Magnetism from Conductors and Enhanced Nonlinear Phenomena[J]. IEEE Trans. Microwave Theory and Tech., 1999, 47: 2075-2084.

[5]

Smith D.R., Padilla W.J., Vier D.C., Nemat-Nasser S.C., Schultz S. Composite Medium with Simultaneously Negative Permeability and Permittivity[J]. Phys. Rev. Lett., 2000, 84: 4184-4187.

[6]

Shelby R.A., Smith D.R., Nemat-Nasser S.C., Schultz S. Microwave Transmission through a Two-dimensional, Isotropic, Left-handed Metamaterial[J]. Appl. Phys. Lett., 2001, 78: 489-491.

[7]

Shelby R.A., Smith D.R., Schultz S. Experimental Verification of a Negative Index of Refraction[J]. Science, 2001, 292: 77-79.

[8]

Smith D.R., Pendry J.B., Wiltshire M.C.K. Metamaterials and Negative Refractive Index[J]. Science, 2004, 305: 788-792.

[9]

Ramakrishna S.A. Physics of Negative Refraction Index Materials[J]. Rep. Prog. Phys., 2005, 68: 449-521.

[10]

Zhang L., Tuttle G., Soukoulis C.M. GHz Magnetic Response of Split Ring Resonators[J]. Photon. and Nanostruct., 2004, 2: 155-159.

[11]

Kafesaki M., Koschny T., Penciu R.S., Gundogdu T.F., Economou E.N., Soukoulis C.M. Left-handed Metamaterials: Detailed Numerical Studies of the Transmission Properties[ J]. J. Opt. A: Pure. Appl. Opt., 2005, 7: S12

[12]

Cai XB, Hu GK. Pat Shape Left-handed Material and Relative Band-width of Analogous Metamaterials[C]. Proc. of the International Symposium on Biophotonics, Nanophotonic and Metamatirials, 2006, 517

[13]

Zhu W.R., Zhao X.P., Ji N. Double Bands of Negative Refractive Index in the Left-handed Metamaterials with Asymmetric Defects[J]. Appl. Phys. Lett., 2007, 90: 011911

[14]

Simovski C.R., He L.X. Frequency Range and Explicit Expressions for Negative Permittivity and Permeability for an Isotropic Medium Formed by a Lattice of Perfectly Conducting Omega Particles[J]. Phys. Lett. A, 2003, 311: 254-263.

[15]

Chen H.S., Ran L.X., Huangfu J.T. Left-handed Materials Composed of only S-shaped Resonators[J]. Phys. Rev. E, 2004, 70: 057605

[16]

Chen H.S., Ran L.X., Huangfu J.T. Negative Refraction of a Combined Double S-shaped Metamaterial[J]. Appl. Phys. Lett., 2005, 86: 151909

[17]

Zhou J.F., Zhang L., Tuttle G., Koschny T., Soukoulis C.M. Negative Index Materials Using Simple Short Wire Pairs[J]. Phys. Rev. B, 2006, 73: 041101

[18]

Zhou J.F., Koschny T., Zhang L., Tuttle G., Soukoulis C.M. Experimental Demonstration of Negative Index of Refraction[ J]. Appl. Phys. Lett., 2006, 88: 221103

[19]

Kafesaki M., Tsiapa I., Katsarekes N., Koschny T., Soukoulis C.M., Economou E.N. Left-handed Metamaterials: The Fishnet Structure and Its Variations[J]. Phys. Rev. B, 2007, 75: 235114

[20]

Liu Y.H., Luo C.R., Zhao X.P. H-shaped Structure of Left-handed Metamaterials with Simultaneous Negative Permittivity and Permeability[J]. Acta Phys. Sinica, 2007, 56: 5883

[21]

Zhao H.J., Zhou J., Zhao Q., Li B., Kang L. Magnetotunable Left-handed Material Consisting of Yttrium Iron Garnet Slab and Metallic Wires[J]. Appl. Phys. Lett., 2007, 91: 131107

[22]

Eschenauer H.A., Olhoff N. Topology Optimization of Continuum Structures: A Review[J]. Appl. Mech. Rev., 2001, 54(4): 331-390.

[23]

Li J., Ye B., Tang Y., Guan Q., Yang X. Evolutionary Topology Optimization for Heat Conduction Fields[J]. J. Wuhan Univ. Technol., 2006, 28(S3): 105-110.

[24]

Zhang Y., Liu S. Design of Conducting Paths Based on Topology Optimization[J]. Heat Mass Transfer, 2008, 44: 1217-1227.

[25]

Smith D.R., Schultz S., Markos P., Soukoulis C.M. Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients[ J]. Phys. Rev. B, 2002, 65: 195104

[26]

Smith D.R., Vier D.C., Koschny T., Soukoulis C.M. Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials[J]. Phys. Rev. E, 2005, 71: 036617

[27]

Chen X.D., Grzegorezyk T.M., Wu B.I., Pacheco J., Kong J.A. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials[J]. Phys. Rev. E, 2004, 70: 016608

[28]

Hussein M.I., Hamza K., Hulbert G.M. Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics[J]. Struct. Multidisc Optim., 2006, 31: 60-75.

[29]

Markos P., Soukoulis C.M. Transmission Properties and Effective Electromagnetic Parameters of Double Negative Metamaterials[J]. Opt. Express, 2003, 11: 649-661.

[30]

Koschny T., Markos P., Smith D.R., Soukoulis C.M. Resonant and Antiresonant Frequency Dependence of the Effective Parameters of Metamaterials[J]. Phys. Rev. E, 2003, 68: 065602

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/