Early hydration of composite cement with thermal activated coal gangue

Wei Guo , Jianping Zhu , Dongxu Li , Jianhua Chen , Nanru Yang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 162 -166.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 162 -166. DOI: 10.1007/s11595-010-1162-0
Article

Early hydration of composite cement with thermal activated coal gangue

Author information +
History +
PDF

Abstract

Composite cement samples were prepared by mixing clinker, gypsum with burnt coal gangues which was calcined at various temperatures. The mechanical strength and Ca(OH)2 content in the cement paste were tested, and the paste composition and microstructure were analyzed by thermogravimetry-differential thermal analysis (TG-DSC), X-ray diffraction(XRD), scanning electronic microscopy (SEM) and pore structure analysis. Results demonstrate that the thermal activated coal gangue could accelerate the early hydration of cement clinker obviously, which promotes the gangue hydration itself. The early hydrated products of the cement are C-S-H gel, Ca(OH)2 and AFt. The cement with 30% (in mass) the gangue exhibits higher mechanical strength, and among all the cement samples the one with the gangue burnt at 700 °C displays the highest hydration rate, mechanical strength, the most gel pores and the lowest total porosity.

Keywords

blended cement / hydration / microstructure / hydration product

Cite this article

Download citation ▾
Wei Guo, Jianping Zhu, Dongxu Li, Jianhua Chen, Nanru Yang. Early hydration of composite cement with thermal activated coal gangue. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(1): 162-166 DOI:10.1007/s11595-010-1162-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen D. S. Fly Ash Concrete[M], 1989 Beijing China Railway Press 59-60.

[2]

Song X. Y., Gong C. C., Li D. X. Study on Structural Characteristic and Mechanical Property of Coal Gangue in Activation Process[J]. J. Chin. Ceram. Soc., 2004, 32(3): 358-363.

[3]

Gu B. W., Wang P. M., Xiong S. B. Effect of Mechanical Grinding on Particle Size Distribution and Strength of Coal Gangue Cement System[J]. J. Southeast. Univ., 2005, 35(12): 168-171.

[4]

H S Zhao, X Zhang, J Cao. Particle Features of Cement-Coal Gangue System and Its Properties[J]. Cem. Eng., 2003 (5): 26–30

[5]

Guo W., Li D. X., Yang N. R. The Characteristics of Ions Dissolving-out and Structural Change of Calcined Coal Gangue in Alkaline Solutions[J]. J. Chin. Ceram. Soc., 2004, 32(10): 1 229-1 234.

[6]

Sa’nchez R. M. T., Basaldella E. I., Marco J. F. The Effect of Thermal and Mechanical Treatments on Kaolinite: Characterization by XPS and IEP Measurements[J]. J. Colloid and Interface Sci., 1999, 215: 339-344.

[7]

Yao L. B., Gao Z. M. 29Si and 27Al Mas/NMR Study of the Thermal Transformation of Kaolin[J]. Acta Mineralogical Sinica, 2001, 21(3): 448-452.

[8]

Kakali G., Perraki T., Tsivilis S. Thermal Treatment of Kaolin: The Effect of Mineralogy on the Pozzolanic Activity[J]. Appl. Clay. Sci., 2001, 20: 73-80.

[9]

Javier F. H., Chou L., Wollast R. Mechanism of Kaolinite Dissolution at Room Temperature and Pressure, Part II: Kinetic Study[J]. Geochimica et Cosmochimica Acta., 1999, 63(20): 3 261-3 275.

[10]

Shvarzman A., Kovler K., Grader G. S., . The Effect of Dehydroxylation/amorphization Degree on Pozzolanic Activity of Kaolinite[J]. Cem. Concr. Res., 2003, 33(2): 405-416.

[11]

Fang Y. H., Zheng B., Zhang Y. T. Metakaolin and Its Application in High Performance Concrete[J]. J. Chin. Ceram. Soc., 2003, 31(8): 801-805.

[12]

Yang N. R., Yue W. H. The Handbook of Inorganic Metalloid Materials Atlas[M], 2000 Wuhan Wuhan University of Technology Press

[13]

Yang N. R. The Forming and Stationary Condition of Ettringite[ J]. J. Chin Ceram Soc., 1984, 12(2): 157-16.

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/