Effect of valence electron structure on temper process and hardness of the supersaturated carburized layer

Juyan Shi , Guisheng Xie , Jingyuan Chang , Huihui Lin , Shunqi Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 127 -134.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 127 -134. DOI: 10.1007/s11595-010-1127-3
Article

Effect of valence electron structure on temper process and hardness of the supersaturated carburized layer

Author information +
History +
PDF

Abstract

By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 °C or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase.

Keywords

supersaturated carburizing steel / temper process / valence electron structure / hardness

Cite this article

Download citation ▾
Juyan Shi, Guisheng Xie, Jingyuan Chang, Huihui Lin, Shunqi Wang. Effect of valence electron structure on temper process and hardness of the supersaturated carburized layer. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(1): 127-134 DOI:10.1007/s11595-010-1127-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu R H. Empirical Electron Theory (EET) of Solids and Molecules[J]. Chinese Science Bulletin, 1978, (4): 217–224 (in Chinese)

[2]

Liu Z. L., Sun Z. G., Li Z. L. Application of Yu’s Theory and Cheng’s Theory in Alloy Research[J]. Progress in Natural Science, 1998, 8(2): 134-146.

[3]

Dai T. S., Liu Z. L., Qu Y. B., . The Valence Electron Structure of Austenite in Low Alloy Ultrahigh-strength Steels and Its Influences on Kinetics of Phase Transformation[ J]. Science in China (Series A), 1990, 33(9): 1 132-1 140.

[4]

Zhu R. F., Lu L. P., Wei T. C-Mn Segregation and Its Effect on Phase Transformation and Deformation in Fe-Mn-C Alloy[J]. Science in China (Series E), 1997, 40(6): 567-573.

[5]

Liu Z. L., Dai T. S., Qu Y. B., . The Valence Electron Structures of Martensite in Low Alloy Ultra-high-strength Steels and Their Influence on Strength and Toughness[J]. Chinese Science Bulletin, 1991, 36(5): 366-371.

[6]

Qian C. F., Zhang G. Y., Chen F. F., . Empirical Equation on Alloy Design of a High Strength-toughness Steel[J]. Journal of Northeastern University (Natural Science), 2001, 22(3): 351-353.

[7]

Zhang J. M. Valence Electron Structure Analysis of Hardness of Fe-C Martensite[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2001, 29(1): 31-37.

[8]

Zhang B. J. Study on Optimizing the Technics of the Supersaturation Carburization on 20Cr Steel and a New Type Supersaturation Carburization Steel, 2007 Taiyuan Taiyuan University of Technology

[9]

Shi J Y, Tian X Q, Zhang B J, et al. A Supersaturated Carburizing Steel[P]. CN101058865, 200710062035.8(in Chinese)

[10]

Janovec J., Svoboda M., Blach J. Evoluton of Secondary Phases 12%Cr Steel During Quenching and Tempering[J]. Materials Science and Engineering A, 1998, 249: 184-189.

[11]

Nussbaum G., Richter J., Gueth A., . Microstructural Characterization and Structure/property Relations of Microalloyed Medium Carbon Steels with Ferrite-bainite/martensite Microstructure[J]. Materials Science Forum, 1998, 284–286: 443-450.

[12]

Liu Z. L. Alloy VES and Composition Design[M], 1990 Changchun Jilin Science and Technology Publishing House

[13]

Zhang R. L. Empirical Electron Theory in Solids and Molecules, 1993 Changchun Jilin Science and Technology Publishing House

[14]

Shi R. X., Yang R. C., Zhou C. H., . The Relationship Between Lattice Constants and Temperature in EET[J]. Journal of Shandong University (Engineering Science), 2004, 34(5): 5-9.

[15]

Qi Z. F. Metal Heat Treatment Principle[M], 1987 Beijing Machinery Industry Press

[16]

Zhong S. H. Temper Process and Temper Equation of Steel[M], 1993 Beijing Machinery Industry Press

[17]

Liu Z. L., Li Z. L., Liu W. D. Interface Electron Structure and Interface Properties[M], 2002 Beijing Science Publishing House

[18]

Shi J U, Xie G S, Zhang B J, et al. Study on Supersaturation Carburization of 35Cr3SiMnMoV Steel[J]. Transactions on Materials and Heat Treatment(in Chinese, accepted, in press)

[19]

PDF, PCPDFWIN Version2.3, JCPDS-ICDD[DB]. June, 2002

[20]

Liu Z., Li Z., Sun Z. G., . Valence Electron Structure of Cast Iron and Criterion of Graphitizing Behavior[J]. Science in China (Series A), 1995, 25(9): 899-994.

[21]

Gao H. X., Wang J., Huang J. F., . Tempered Carbides Precipitation Rule and Its Influence on Mechanical Properties of Novel Quick-firer Steel[J]. Metal Hot Working Technology, 2007, 36(10): 44-47.

[22]

Yang R. C. Electron Theory Study on Tempering Behavior of High Speed Steel[J]. Material Science and Technology, 1996, 4(4): 102-105.

[23]

Sun J. T., Fan R. H., Liu B., . Analysis of Valence Electron Structure and Interface Electron Density of Carbide[J]. Journal of Synthetic Crystals, 2004, 33(3): 316-319.

[24]

Liu N., Liu X. F. Valence Electron Structure of Mo2C Phase and Its Eigen-hardness[J]. Journal of Hefei University of Technology, 1997, 20(4): 14-19.

[25]

Liu N., Tian C. Y., Shu S. M., . Research on the Valence Electron Structures of VC, NbC, TaC Phases and Their Eigen-hardness[J]. Journal of Hefei University of Technology, 1998, 21(1): 15-19.

[26]

Martinelli A. E., Drew R. A. L. Microstructural Development During Diffusion Bonding of α -silicon Carbide to Molybdenum[J]. Materials Science and Engineering A, 1995, 191(1–2): 239-247.

[27]

Wang X. H., Han F., Liu X. M., . Effect of Molybdenum on the Microstructure and Wear Resistance of Fe-based Hardfacing Coatings[J]. Materials Science and Engineering A, 2008, 489(1–2): 193-200.

[28]

Bepari M. M. A., Shorowordi K. M. Effects of Molybdenum and Nickel Additions on the Structure and Properties of Carburized and Hardened Low Carbon Steels[J]. Journal of Materials Processing Technology, 2004, 155-156(1–3): 1 972-1 979.

[29]

Yao M. X., Wu J. B. C., Xie Y. Wear, Corrosion and Cracking Resistance of Some W-or Mo-containing Satellite Hardfacing Alloys[J]. Materials Science and Engineering A, 2005, 407(1–2): 234-244.

[30]

Wu W., Hwu L., Lin D. Y. Relationship Between Alloying Elements and Retained Austenite in Martensitic Stainless Steel Welds[J]. Scripta Materialia, 2000, 42(11): 1 071-1 076.

[31]

Ding H Y, Zhang Y, Zhou G H, et al. Influence of Retained Austenite on Grinding Cracks of the Parts Surfaces Made of High Carbon Steel[J]. Hot Working Technology, 1999, (4): 34–35(in Chinese)

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/