Preparation of gold nanorods of high quality and high aspect ratio

Qiaoling Li , Thomas Bürgi , Hui Chen

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 104 -107.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 104 -107. DOI: 10.1007/s11595-010-1104-x
Article

Preparation of gold nanorods of high quality and high aspect ratio

Author information +
History +
PDF

Abstract

We report the synthesis of gold nanorods (NRs) by seed-mediated growth method. A small amount of different shapes such as triangles, hexagons and a large amount of rods are obtained by varying the proportion of seed to metal salt, adding NaOH to growth solution as well as using the seed solution of CTAB-capped agent. The gold nanorod (NR) formation yield is improved. Meanwhile, the growth mechanism of high yield gold NRs is discussed. The high quality single size NRs can be separated from polydisperse samples using surfactant-assisted nanorod self-assembly. The gold NRs synthesized were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy.

Keywords

gold nanorods (NRs) / seed-mediated growth method / transmission electron microscopy (TEM) / growth mechanism of gold NRs

Cite this article

Download citation ▾
Qiaoling Li, Thomas Bürgi, Hui Chen. Preparation of gold nanorods of high quality and high aspect ratio. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(1): 104-107 DOI:10.1007/s11595-010-1104-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alivisatos A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science, 1996, 271(5251): 933-937.

[2]

Michalet X., Pinaud F., Lacoste T. D., . Properties of Fluorescent Semiconductor Nanocrystals and Their Application to Biological Labelling[J]. Single Mol., 2001, 2(4): 261-267.

[3]

Creighton J. A., Eadon D. G. Ultravoilet-Visible Absorption Spectra of the Colloidal Metallic Elements[J]. J. Chem. Soc. Faraday Trans., 1991, 87(24): 3 881-3 891.

[4]

Murphy C. J. Nanocubes and Nanoboxes[J]. Science, 2002, 298(5601): 2 139-2 141.

[5]

Huang M. H., Mao S., Feick H., . Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science, 2001, 292(5523): 1 897-1 899.

[6]

Huynh W. U., Dittmer J. J., Alivisatos A. P. Hybrid Nanorod-Polymer Solar Cells[J]. Science, 2002, 295(5564): 2 425-2 427.

[7]

El-Sayed M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes[J]. Acc. Chem. Res., 2001, 34(4): 257-264.

[8]

Nikoobakht B., El-Sayed M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) using Seed-Mediated Growth Method[J]. Chem. Mater., 2003, 15(10): 1 957-1 962.

[9]

Sun Y., Gates B., Mayers B., . Crystalline Silver Nanowires by Soft Solution Processing[J]. Nano Lett., 2002, 2(2): 165-168.

[10]

N R Jana, L Gearheart, C J Murphy. Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controlladble Aspect Ratio[J]. Chem. Commun., 2001, (7): 617–618

[11]

Caswell K. K., Bender C. M., Murphy C. J. Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires[J]. Nano Lett., 2003, 3(5): 667-669.

[12]

Yu Y. Y., Chang S. S., Lee C. L., . Gold Nanorods: Electrochemical Synthesis and Optical Properties[J]. J. Phys. Chem. B, 1997, 101(34): 6 661-6 664.

[13]

Chang S. S., Shih C. W., Chen C. D., . The Shape Transition of Gold Nanorods[J]. Langmuir, 1999, 15(3): 701-709.

[14]

Sau T. K., Murphy C. J. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution[J]. Langmuir, 2004, 20(15): 6 414-6 420.

[15]

Jana N. R., Gearheart L., Murphy C. J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. J. Phys. Chem. B, 2001, 105(19): 4 065-4 047.

[16]

Jana N. R., Gearheart L., Murphy C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles using a Surfactant Template[J]. Adv. Mater., 2001, 13(18): 1 389-1 393.

[17]

Busbee B. D., Obare S. O., Murphy C. J. An Improved Sythesis of High-Aspect-Ratio Gold Nanorods[J]. Adv. Mater., 2003, 15(5): 414-416.

[18]

Pal T., De S., Jana N. R., . Organized Media as Redox Catalysts[J]. Langmuir, 1998, 14(17): 4 724-4 730.

[19]

Watzky M. A., Finke R. G. Nanocluster Size Control and “Magic Number” Investigations, Experimental Tests of the “Living Metal Polymer” Concept and of Mechanism Based Size Control Predictions Leading to the Syntheses of Iridium Nanoclusters Centering about Four Sequential Magic Numbers[ J]. Chem. Mater., 1997, 9(12): 3 083-3 095.

[20]

Johnson C. J., Dujardin E., Davis S. A., . Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-directed Synthesis[J]. J. Mater. Chem., 2002, 12(6): 1 765-1 770.

[21]

Chen H. M., Peng H. C., Liu R. S., . Controlling the Length and Shape of Gold Nanorods[J]. J. Phys. Chem. B, 2005, 109(42): 19 553-19 555.

[22]

Jana N R Nanorod Shape Separation Using Surfactant Assisted Self-Assembly[J]. Chem. Commun., 2003, 1: 950-1.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/