Facile synthesis of uniform hollow hematite sub-micro spheres with controllable shell thickness

Gongqin Yan , Jianguo Guan , Wenhua Zhu , Wei Wang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 32 -38.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 32 -38. DOI: 10.1007/s11595-010-1032-9
Article

Facile synthesis of uniform hollow hematite sub-micro spheres with controllable shell thickness

Author information +
History +
PDF

Abstract

A simple method was developed to prepare the uniform hematite hollow submicro-spheres with controllable structure and different diameter based on monodisperse poly(styrene-co-acrylic acid) [P(St-co-AA)] particles. The structure and formation mechanism of the hollow spheres were investigated in detail. The control mechanism of shell thickness was also discussed. The results indicated that the shell thickness and coarseness of the synthesized core-shell hematite hollow spheres could be tuned simply by the surface carboxyl content of the P(St-co-AA) particles. This method provided a new approach for the structure control in the preparation of hollow spheres. A Brunauer-Emmett-Teller (BET) test shows that the prepared hollow spheres have large surface areas which were decreased along with the increase of the diameter. The magnetic properties of the as-obtained hematite hollow spheres were investigated. The result showed that the coercivity and saturated magnetization were increased along with the increase of the shell thickness, and the remanent magnetization was increased along with the decrease of the diameter.

Keywords

hollow spheres / hematite / shell thickness / BET special surface area / magnetization properties

Cite this article

Download citation ▾
Gongqin Yan, Jianguo Guan, Wenhua Zhu, Wei Wang. Facile synthesis of uniform hollow hematite sub-micro spheres with controllable shell thickness. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(1): 32-38 DOI:10.1007/s11595-010-1032-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Caruso F., Caruso R. A., Möhwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998, 282: 1 111-1 114.

[2]

Jiang P., Bertone F. J., Colvin L. V. A Lost-wax Approach to Monodisperse Colloids and Their Crystals[J]. Science, 2001, 291: 453-457.

[3]

Huang Z. M., Guan J. G., Gan Z. P., . Template Preparation Techniques and Application of Hollow Micro- or Nano-particles[J]. J. Inor. Mater., 2005, 20: 1 281-1 287.

[4]

Caruso F. Hollow Inorganic Capsules via Colloid-Templated Layer-by-Layer Electrostatic Assembly[J]. Top. Curr. Chem., 2003, 227: 145-169.

[5]

Ren P., Guan J. G., Cheng X. D. Influence of Heat Treatment Conditions on the Structure and Magnetic Properties of Barium Ferrite BaFe12O19 Hollow Microspheres of Low Density[J]. Mater. Chem. Phys., 2006, 98: 90-94.

[6]

Caruso F., Spasova M., Veronica S. M. Multilayer Assemblies of Silica-encapsulated Gold Nanoparticles on Decomposable Colloid Templates[J]. Adv. Mater., 2001, 13: 1 090-1 094.

[7]

Wang X. D., Yang W. L., Tang Y., . Fabrication of Hollow Zeolite Spheres[J]. Chem. Commun., 2000, 33: 2 161-2 162.

[8]

Yoon S. B., Kim J. Y., Kim J. H., . Template Synthesis of Nanostructured Silica with Hollow Core and Mesoporous Shell Structures[J]. Curr. Appl. Phys., 2006, 6: 1 059-1 063.

[9]

Deng Z. W., Chen M., Zhou S. X., . A Novel Method for the Fabrication of Monodisperse Hollow Silica Spheres[J]. Langmuir, 2006, 22: 6 403-6 407.

[10]

Liu S. Q., Rao J. C., Sui X. Y., . Preparation of Hollow Silica Spheres with Different Mesostructures[J]. J. Non-Cryst. Solids, 2008, 354: 826-830.

[11]

Caruso F., Shi X. Y., Caruso R. A., . Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles[J]. Adv. Mater., 2001, 13: 740-744.

[12]

Shiho H., Kawahashi N. Titanium Compounds as Coatings on PS Latices and as Hollow Spheres[J]. Colloid Polym. Sci., 2000, 278: 270-274.

[13]

Imhof A. Preparation and Characterization of Titania-coated Polystyrene Spheres and Hollow Titania Shells[J]. Langmuir, 2001, 17: 3 579-3 585.

[14]

Nakashima T., Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Lonic Liquids[J]. J. Am. Chem. Soc., 2003, 125: 6 386-6 387.

[15]

Wang D. B., Song C. X., Lin Y. S., . Preparation and Characterization of TiO2 Hollow Spheres[J]. Mater. Lett., 2006, 60: 77-80.

[16]

Yang Z. Z., Niu Z. W., Lu Y. F., . Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-shell Gel Particles[J]. Angew. Chem. Int. Ed., 2003, 42: 1 943-1 945.

[17]

Yin Y. D., Lu Y., Gates B., . Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces[J]. Chem. Mater., 2001, 13: 1 146-1 148.

[18]

Eiden S., Maret M. Preparation and Characterization of Hollow Spheres of Rutile[J]. J. Colloid Interf. Sci., 2002, 250: 281-284.

[19]

Li G. C., Zhang Z. K. Synthesis of Submicrometer-sized Hollow Titania Spheres with Controllable Shells[J]. Mater. Lett., 2004, 58: 2 768-2 771.

[20]

Wu L. Z., Zhi J. F. One-step Synthesis of Anatase-crystalline Titania Hollow Spheres in Aqueous Solution[J]. Acta Phys.-Chim. Sin., 2007, 23: 1 173-1 177.

[21]

Syoufian A., Nakashima K. Degradation of Methylene Blue in Aqueous Dispersion of Hollow Titania Photocatalyst: Optimization of Reaction by Peroxydisulfate Electron Scavenger[J]. J. Colloid Interf. Sci., 2007, 313: 213-218.

[22]

Yin J. L., Qian X. F., Yin J., . Preparation of Polystyrene/Zirconia Core-shell Microspheres and Zirconia Hollow Shells[J]. Inorg. Chem. Commun., 2003, 6: 942-945.

[23]

Yang Y., Chu Y., Zhang Y. P., . Polystyrene-ZnO Core-shell Microspheres and Hollow ZnO Structures Synthesized with the Sulfonated Polystyrene Templates[J]. J. Solid State Chem., 2006, 179: 470-475.

[24]

Yan G. Q., Guan J. G., Wang W. Monodispersed Fe3O4 Hollow Submicro-spheres Prepared by Pyrolysis-Deoxidization[J]. Acta Phys.-Chim. Sin., 2007, 23(12): 1 958-1 962.

[25]

Caruso F., Spasova M., Susha A., . Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater., 2001, 13: 109-116.

[26]

Huang Z. B., Tang F. Q. Hematite Nanoparticles as Polystyrene Microsphere Coatings and Hollow Spheres: Preparation and Characterization[J]. Colloid Polym. Sci., 2004, 282: 1 198-1 205.

[27]

Huang Z. B., Tang F. Q. Preparation, Structure, and Magnetic Properties of Mesoporous Magnetite Hollow Spheres[J]. J. Colloid Interf. Sci., 2005, 281: 432-436.

[28]

Shiho H., Kawahashi N. Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres[J]. J. Colloid Interf. Sci., 2000, 226: 91-97.

[29]

Dai Z. F., Meiser F., Möhwald H. Nanoengineering of Iron and Iron Oxide/Silica Hollow Spheres by Sequential Layering Combined with a Sol-gel Process[J]. J. Colloid Interf. Sci., 2005, 288: 298-300.

[30]

Chen X. Y., Zhang Z. J., Li X. X., . Hollow Magnetite Spheres: Synthesis, Characterization, and Magnetic Properties[ J]. Chem. Phys. Lett., 2006, 422: 294-298.

[31]

Tartaj P., Carreno T. G., Serna J. C. Single-step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties[J]. Adv. Mater., 2001, 13: 1 620-1 624.

[32]

Mao B. D., Kang Z. H., Wang E. B., . Template Free Fabrication of Hollow Hematite Spheres via a One-pot Polyoxometalate-Assisted Hydrolysis Process[J]. J. Solid State Chem., 2007, 180: 497-503.

[33]

Li L. L., Chu Y., Liu Y., . Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres[J]. J. Phys. Chem. C, 2007, 111: 2 123-2 127.

[34]

Jiang J. L., Lu H. Q., Zhang L. X., . Preparation of Monodisperse Ni/PS Spheres and Hollow Nickel Spheres by Ultrasonic Electroless Plating[J]. Surf. Coat. Technol., 2007, 201: 7 174-7 179.

[35]

K F Zhong, P Jin, Q W Che. Ni Hollow Nanospheres: Preparation and Catalytic Activity[J]. J. Nanomaterials, 2006: 1–7

[36]

Kim S. W., Kim M., Lee W. Y. Fabrication of Hollow Pallsdium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[ J]. J. Am. Chem. Soc., 2002, 124: 7 642-7 643.

[37]

Zhang J. H., Liu H. Y., Wang Z. L., . A Solvent-Assisted Route for Coating Polystyrene Colloids with Ag and the Corresponding Hollow Ag Spheres[J]. Mater. Lett., 2007, 61: 4 579-4 582.

[38]

Zhang Y. Q., Huang Z. B., Tang F. Q., . Ferrite Hollow Spheres with Tunable Magnetic Properties[J]. Thin Solid Films, 2006, 515: 2 555-2 561.

[39]

Gan Z. P., Guan J. G. In-situ Induced Growth to Mono-dispersed Hollow M-type Barium Ferrite Sub-microspheres[J]. Chem. J. Chin. Univ., 2005, 26: 1 986-1 989.

[40]

Gan Z. P., Guan J. G. Chemical Self-assembly Route to Fabricate Hollow Barium Ferrite Submicrospheres[J]. Acta Phys.-Chim. Sin., 2006, 22: 189-192.

[41]

Pan G. S., Kesavamoorthy R., Asher S. A. Optically Nonlinear Bragg Diffracting Nanosecond Optical Wwitches[J]. Phys. Rev. Lett., 1997, 78: 3 860-3 863.

[42]

Moroz A. Photonic Crystals of Coated Metallic Spheres[J]. Europhys. Lett., 2000, 50: 466-472.

[43]

Moroz A. Three-Dimensional Complete Photonic-band-gap Structures in the Visible[J]. Phys. Rev. Lett., 1999, 83: 5 274-5 277.

[44]

Zhang W. Y., Lei X. Y., Wang Z. L., . Robust Photonic Band Gap From Tunable Scatterers[J]. Phys. Rev. Lett., 2000, 84: 2 853-2 856.

[45]

Nie S. R., Emroy S. R. Probing Single Molecules and Single Nanoparticles by Surface-enhanced Raman Scattering[J]. Science, 1997, 275: 1 102-1 106.

[46]

Graf C., Blaaderen A. Metallodielectric Colloidal Core-shell Particles for Photonic Applications[J]. Langmuir, 2002, 18: 524-534.

[47]

Yan G. Q., Guan J. G., Gan Z. P. Polym. Preparation and Characterization of Monodispersed P(St-co-AA) Microspheres[J]. Mater. Sci. Eng., 2007, 23(1): 222-225.

[48]

Kandori K., Okamoto N., Ishikawa T. Preparation of Nanoporous Micrometer-scale Hematite Particles by a Forced Hydrolysis Reaction in the Presence of Polyethylene Glycol[J]. Langmuir, 2002, 18: 2 895-2 900.

[49]

Cornell R. M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, Uses[M], 2003 Weinheim Weily-VCH Verlag GmbH & Co. KGaA

[50]

Chen J., Xu L. N., Li W. Y., . Alpha-Fe2O3 Nanotubes in Gas Sensor and Lithium-ion Battery Applications[J]. Adv. Mater., 2005, 17: 582-586.

[51]

Xiong Y. J., Li Z. Q., Li X. X., . Thermally Stable Hematite Hollow Nanowires[J]. Inorg. Chem., 2004, 43: 6 540-6 542.

[52]

Zhao Y. M., Charles W. D., Gregory D. H., . Low-Temperature Magnetic Properties of Hematite Nanorods[J]. Chem. Mater., 2007, 19: 916-921.

[53]

Wang W. W., Zhu Y. J., Ruan M. L. Microwave-Assisted Synthesis and Magnetic Property of Magnetite and Hematite Nanoparticles[J]. Journal of Nanoparticle Research, 2007, 9: 419-426.

[54]

Raming T. P., Winnubst A. J. A., van Kats C. M., . The Synthesis and Magnetic Properties of Nanosized Hematite Particles[J]. J. Colloid Interf. Sci., 2002, 249: 346-350.

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/