Non-isothermal melt crystallization kinetics of anhydrite-filled polypropylene composites

Shaohui Wang , Weibing Xu , Zhengfa Zhou , Fengmei Ren

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 12 -19.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (1) : 12 -19. DOI: 10.1007/s11595-010-1012-0
Article

Non-isothermal melt crystallization kinetics of anhydrite-filled polypropylene composites

Author information +
History +
PDF

Abstract

The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Z c and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.

Keywords

polypropylene / anhydrite / composites / non-isothermal crystallization kinetics

Cite this article

Download citation ▾
Shaohui Wang, Weibing Xu, Zhengfa Zhou, Fengmei Ren. Non-isothermal melt crystallization kinetics of anhydrite-filled polypropylene composites. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(1): 12-19 DOI:10.1007/s11595-010-1012-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shen H., Wang Y. H., Mai K. C. Non-isothermal Crystallization Behavior of PP/Mg(OH)2 Composites Modified by Different Compatibilizers[J]. Thermochimica Acta, 2007, 457(1): 27-34.

[2]

Majumdar J., Cser F., Jollands M. C., . Thermal Properties of Polypropylene Post-consumer Waste[J]. J. Therm. Anal. Cal., 2004, 78(3): 849-863.

[3]

Paik P., Kar K. K. High Molecular Weight Polypropylene Nano-spheres: Synthesis and Characterization[J]. Polymer Degradation and Stability, 2007, 105(3): 24-35.

[4]

Dominkovics Z., Danyadi L., Pukanszky B. Composites Part A:Applied Science and Manufacturing[J]. Composites, 2007, 38(8): 1 893-1 901.

[5]

Arbelaiz A., Fernandez B., Ramos J. A. Thermal and Crystallization Studies of Short Flax Fibre Reinforced Polypropylene Matrix Composites: Effect of Treatments[J]. Thermochimica Acta, 2006, 440(2): 111-121.

[6]

Li Y., Fang Q. F., Yi Z. G., . Preparation of the CdS Semiconductor Nanofibril by UV Rrradiation[J]. Materials Science and Engineering, 2004, 370(90): 268-276.

[7]

Kiss A., Fekete E., Pukanszky B. Aggregation of CaCO3 Particles in Composites: Effect of Surface[J]. Coating Composites Sci. & Tech., 2007, 67(2): 1 547-1 565.

[8]

Bruno Rotzinger.Talc-filled PP: A New Concept to Maintain Long Term Heat Stability[J]. Polymer Degradation and Stability, 2006, 91(12): 2 884–2 887

[9]

Wang B. B., Wei L. X., Hu G. S. Synergetic Toughness and Morphology of Poly(propylene)/Nylon 11/Maleated Ethylene-Propylene Diene Copolymer Blends[J]. Applied Polymer Science, 2008, 110(3): 1 344-1 350.

[10]

de Medeiros E. S., Tocchetto R. S., de Carvalho L. H., . Nucleating Effect and Dynamic Crystallization of a Poly (propylene)/Talc System[J]. J.Therm. Anal. Cal., 2001, 66(1): 523-531.

[11]

Causin V., Marega C., Saini R., . Crystallization Behavior of Isotactic Polypropylene Based Nanocomposites[ J]. J. Therm. Anal. Cal., 2007, 90(3): 849-857.

[12]

J Menczel, J Varga. Influence of Nucleating Agents on Crystallization of Polypropylene[J]. J. Therm. Anal.,1983, (28): 161–174

[13]

Qi D. M., Shao J. Z., Wu M. H. Phenolic Rigid Organic Filler/isotactic Polypropylene Composites II. Tensile Properties[J]. Front. Chem. Eng. China, 2008, 2(4): 396-408.

[14]

Pang Y. Y., Dong X., Zhang X. Q. Interplay Between Crystallization Behaviors and Extensional Deformation of Isotactic Polypropylene and Its Blend with Poly (ethylene-co- octene)[J]. Polymer, 2008, 49(10): 2 568-2 577.

[15]

Supaphol P., Thanomkiat P., Philips R. Non-isothermal Crystallization and Crystalline Structure of PP/POE blends[J]. Polymer Testing, 2004, 23(5): 881-889.

[16]

Evju C., Hansen S. Dilation and Phase Development in Pastes of Aluminate Cement, Portland Cement, and B-Calcium Sulfate Hemihydrate[J]. Cement and Concrete Research, 2005, 35(2): 124-130.

[17]

Wang Y. M., Shen C. Y., Chen J. B. Nonisothermal Cold Crystallization Kinetics of Poly(ethylene terephthalate)/Clay Nanocomposite[J]. The Society of Polymer Science, 2001, 35(11): 884-889.

[18]

Yang S., Wang S. H., Xu W. B. Perform Ances of Anhydrite/Polypropylene Composites[J]. China Plastic, 2007, 36(3): 1-5.

[19]

Kim Y. C., Kim C.Y. Crytsallization Characteristics of Isotactic PP in Presence of Nucleting Agents[J]. Polymer Eng. And Sci., 1991, 31(14): 1 009-1 015.

[20]

Avrami M. J. Kinetics of Phase Change: Transformation-time[J]. Chem Phys., 1941, 9(24): 177-182.

[21]

Jeziorny A. Institute of Fiber Physics and Textile Finishing[ J]. Polymer, 1978, 19(2): 1 142-1 146.

[22]

Ozawa T. Non-isothermal Kinetics of Diffusion and Its Application to Thermal Analysis[J]. Journal of Thermal Analysis and Calorimetry, 1973, 5(6): 150-158.

[23]

Liu T. X., Mo Z. S., Wang S. E., . Influence of Annealing on Structure of Poly(aryl ether ether ketone ketone) Revealed by SAXS[J]. Polym. Eng. Sci., 1997, 69(9): 1 829-1 835.

[24]

Kim H. S., Choi S. W., Lee B. H., . Thermal Properties of Bio -flour-filled Polypropylene Bio-composites with Different Pozzolan Contents[J]. J. Therm. Anal. Cal., 2007, 89(3): 125-129.

[25]

Gutzow J., Dobreva A., Schmelzer J. Rheology of Non-Newtonian Glass-forming Melts[J]. Journal of Materials Science, 1993, 28(4): 215-220.

[26]

Kissinger H. E. Crystallization of Sputter Deposited Amorphous MoNi[J]. Journal of Materials Science, 1981, 16(4): 217-225.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/