Influence of mechanical milling on photocatalytic activity of g-C3N4 prepared by heating melamine

Ming Yang , Jianqing Feng , Qiao Huang

Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (6) : 914 -918.

PDF
Journal of Wuhan University of Technology Materials Science Edition ›› 2010, Vol. 25 ›› Issue (6) : 914 -918. DOI: 10.1007/s11595-010-0119-7
Article

Influence of mechanical milling on photocatalytic activity of g-C3N4 prepared by heating melamine

Author information +
History +
PDF

Abstract

Using X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, ultraviolet-visible diffuse reflection spectra, and photoluminescence spectroscopy, the effect of mechanical milling on the photocatalytic activity of g-C3N4 photocatalyst was investigated. The rhodamine B, as a photodegrading goal, was used to evaluate the photocatalytic activity of g-C3N4. The experimental results indicate that the milling treatment is an effective method to improve the photocatalytic activity of g-C3N4. The enhanced photocatalytic activity was attributed to the improvement in catalyst’s surface area and dye adsorption on catalyst surface. Moreover, checking the luminescence properties of g-C3N4, it is found that the photocatalytic active sites on g-C3N4 are likely the same as luminescence sites.

Keywords

photocatalysis / g-C3N4 / mechanical milling

Cite this article

Download citation ▾
Ming Yang, Jianqing Feng, Qiao Huang. Influence of mechanical milling on photocatalytic activity of g-C3N4 prepared by heating melamine. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25(6): 914-918 DOI:10.1007/s11595-010-0119-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schwitzgebel J., Ekerdt J. G., Gerischer H., Heller A. Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions[J]. J. Phys. Chem., 1995, 99: 5633-5638.

[2]

Antonelli D. M., Ying J. Y. Synthesis of Hexagonally-Packed Mesoporous TiO2 by a Modified Sol-Gel Method[J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 2014-2017.

[3]

Bosc F., Ayral A., Albouy P. A., Guizard C. A Simple Route for Low-Temperature Synthesis of Mesoporous and Nanocrystalline Anatase Thin Films[J]. Chem. Mater., 2003, 15: 2463-2468.

[4]

Sato S., White J. M. Photodecomposition of Water over Pt/TiO2 Catalysts[J]. Chem. Phys. Lett., 1980, 72: 83-86.

[5]

Borgarello E., Kiwi J., Pelizzetti E., Visca M., Gratzel M. Photochemical cleavage of water by photocatalysis[J]. Nature, 1981, 289: 158-160.

[6]

Kato H., Asakura K., Kudo A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure[ J]. J. Am. Chem. Soc., 2003, 125: 3082-3089.

[7]

Asahi A., Morikawa T., Ohwaki T., Aoki K., Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293: 269-271.

[8]

Zou Z. G., Ye J. H., Sayama K., Arakawa H. Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst[J]. Nature, 2001, 414: 625-627.

[9]

Tsuji I., Kato H., Kobayashi H., Kudo A. Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1 − x)S2 Solid Solutions[ J]. J. Phys. Chem. B, 2005, 109: 7323-7329.

[10]

Maeda K., Teramura K., Lu D. L., Takata T., Saito N., Inoue Y., Domen K. Photocatalyst Releasing Hydrogen from Water-Enhancing Catalytic Performance Holds Promise for Hydrogen Production by Water Splitting in Sunlight[J]. Nature, 2006, 440: 295-295.

[11]

Wang D. F., Kako T., Ye J. H. Efficient Photocatalytic Decomposition of Acetaldehyde over a Solid-Solution Perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under Visible-Light Irradiation[J]. J. Am. Chem. Soc., 2008, 130: 2724-2725.

[12]

Wang X. C., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M. A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light[J]. Nat. Mater., 2009, 8: 76-80.

[13]

Wang X. C., Chen X. F., Thomas A., Fu X. Z., Antonietti M. Metal-containing Carbon Nitride Compounds: A New Functional Organic-metal Hybrid Material[J]. Adv. Mater., 2009, 21: 1609-1612.

[14]

Yan S. C., Li Z. S., Zou Z. G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25: 10397-10401.

[15]

Thomas A., Fischer A., Goettmann F., Antonietti M., Müller J., Schlögl R., Carlsson J. M. Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and their use as Metal-free Catalysts[J]. J. Mater. Chem., 2008, 18: 4893-4908.

[16]

Zhao Y. C., Liu Z., Chu W. G., Song L., Zhang Z. X., Yu D. L., Tian Y. J., Xie S. S., Sun L. F. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor[J]. Adv. Mater., 2008, 20: 1777-1781.

[17]

Komatsu T. Attempted Chemical Synthesis of Graphite-like Carbon Nitride[J]. J. Mater. Chem., 2001, 11: 799-801.

[18]

Zhao Y. C., Yu D. L., Yanagisawa O., Matsugi K., Tian Y. J. Structural Evolution of Turbostratic Carbon Nitride after being Treated with a Pulse Discharge[J]. Diamond & Related Materials, 2005, 14: 1700-1704.

[19]

Ma H. A., Jia X. P., Chen L. X., Zhu P. W., Guo W. L., Guo X. B., Wang Y. D., Li S. Q., Zou G. T. Grade Zhang, Phillip Bex. High-pressure Pyrolysis Sudy of C3N6H6: A Route to Preparing Bulk C3N4[J]. J. Phys.: Condens. Matter., 2002, 14: 11269-11273.

[20]

Kosmac T., Courtney T. H. Milling and Mechanical Alloying of Inorganic Nonmetallics[J]. J. Mater. Res., 1992, 7: 1519-1525.

[21]

Groenewolt M., Antonietti M. Synthesis of g-C3N4 Nanoparticles in Mesoporous Silica Host Matrices[J]. Adv. Mater., 2005, 17: 1789-1792.

[22]

Tanahashi K., Kaneta H. Y. Photoluminescence Characterization of Nano-size Defects in Sub-surface Region of Silicon Wafers[J]. Surf. Interface Anal., 2005, 37: 208-210.

[23]

Shen T., Zhao Z. G., Yu Q., Xu H. J. Photosensitized Reduction of Benzil by Heteroatom-containing Anthracene Dyes[J]. J. Photochem. Photobiol. A: Chemistry, 1989, 47: 203-212.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/